Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gunnar Sundstøl Eriksen is active.

Publication


Featured researches published by Gunnar Sundstøl Eriksen.


Journal of Toxicology and Environmental Health-part B-critical Reviews | 2009

Reproductive and Developmental Toxicity of Phthalates

Jan Ludvig Lyche; Arno C. Gutleb; Åke Bergman; Gunnar Sundstøl Eriksen; Albertinka J. Murk; Erik Ropstad; Margaret Saunders; Janneche Utne Skaare

The purposes of this review are to (1) evaluate human and experimental evidence for adverse effects on reproduction and development in humans, produced by exposure to phthalates, and (2) identify knowledge gaps as for future studies. The widespread use of phthalates in consumer products leads to ubiquitous and constant exposure of humans to these chemicals. Phthalates were postulated to produce endocrine-disrupting effects in rodents, where fetal exposure to these compounds was found to induce developmental and reproductive toxicity. The adverse effects observed in rodent models raised concerns as to whether exposure to phthalates represents a potential health risk to humans. At present, di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DBP), and butyl benzyl phthalate (BBP) have been demonstrated to produce reproductive and developmental toxicity; thus, this review focuses on these chemicals. For the general population, DEHP exposure is predominantly via food. The average concentrations of phthalates are highest in children and decrease with age. At present, DEHP exposures in the general population appear to be close to the tolerable daily intake (TDI), suggesting that at least some individuals exceed the TDI. In addition, specific high-risk groups exist with internal levels that are several orders of magnitude above average. Urinary metabolites used as biomarkers for the internal levels provide additional means to determine more specifically phthalate exposure levels in both general and high-risk populations. However, exposure data are not consistent and there are indications that secondary metabolites may be more accurate indicators of the internal exposure compared to primary metabolites. The present human toxicity data are not sufficient for evaluating the occurrence of reproductive effects following phthalate exposure in humans, based on existing relevant animal data. This is especially the case for data on female reproductive toxicity, which are scarce. Therefore, future research needs to focus on developmental and reproductive endpoints in humans. It should be noted that phthalates occur in mixtures but most toxicological information is based on single compounds. Thus, it is concluded that it is important to improve the knowledge of toxic interactions among the different chemicals and to develop measures for combined exposure to various groups of phthalates.


Toxicology Letters | 2011

Endocrine disrupting effects of zearalenone, alpha- and beta-zearalenol at the level of nuclear receptor binding and steroidogenesis.

Caroline Frizzell; Doreen Ndossi; Steven Verhaegen; E. Dahl; Gunnar Sundstøl Eriksen; Morten Sørlie; Erik Ropstad; Marc Muller; Christopher T. Elliott; Lisa Connolly

The mycotoxin zearalenone (ZEN) is a secondary metabolite of fungi which is produced by certain species of the genus Fusarium and can occur in cereals and other plant products. Reporter gene assays incorporating natural steroid receptors and the H295R steroidogenesis assay have been implemented to assess the endocrine disrupting activity of ZEN and its metabolites α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL). α-ZOL exhibited the strongest estrogenic potency (EC(50) 0.022±0.001 nM), slightly less potent than 17-β estradiol (EC(50) 0.015±0.002 nM). ZEN was ~70 times less potent than α-ZOL and twice as potent as β-ZOL. Binding of progesterone to the progestagen receptor was shown to be synergistically increased in the presence of ZEN, α-ZOL or β-ZOL. ZEN, α-ZOL or β-ZOL increased production of progesterone, estradiol, testosterone and cortisol hormones in the H295R steroidogenesis assay, with peak productions at 10 μM. At 100 μM, cell viability decreased and levels of hormones were significantly reduced except for progesterone. β-ZOL increased estradiol concentrations more than α-ZOL or ZEN, with a maximum effect at 10 μM, with β-ZOL (562±59 pg/ml)>α-ZOL (494±60 pg/ml)>ZEN (375±43 pg/ml). The results indicate that ZEN and its metabolites can act as potential endocrine disruptors at the level of nuclear receptor signalling and by altering hormone production.


Toxins | 2013

Faces of a Changing Climate: Semi-Quantitative Multi-Mycotoxin Analysis of Grain Grown in Exceptional Climatic Conditions in Norway

Silvio Uhlig; Gunnar Sundstøl Eriksen; Ingerd Skow Hofgaard; Rudolf Krska; Eduardo Beltrán; Michael Sulyok

Recent climatological research predicts a significantly wetter climate in Southern Norway as a result of global warming. Thus, the country has already experienced unusually wet summer seasons in the last three years (2010–2012). The aim of this pilot study was to apply an existing multi-analyte LC-MS/MS method for the semi-quantitative determination of 320 fungal and bacterial metabolites in Norwegian cereal grain samples from the 2011 growing season. Such knowledge could provide important information for future survey and research programmes in Norway. The method includes all regulated and well-known mycotoxins such as aflatoxins, trichothecenes, ochratoxin A, fumonisins and zearalenone. In addition, a wide range of less studied compounds are included in the method, e.g., Alternaria toxins, ergot alkaloids and other metabolites produced by fungal species within Fusarium, Penicillium and Aspergillus. Altogether, 46 metabolites, all of fungal origin, were detected in the 76 barley, oats and wheat samples. The analyses confirmed the high prevalence and relatively high concentrations of type-A and -B trichothecenes (e.g., deoxynivalenol up to 7230 µg/kg, HT-2 toxin up to 333 µg/kg). Zearalenone was also among the major mycotoxins detected (maximum concentration 1670 µg/kg). Notably, several other Fusarium metabolites such as culmorin, 2-amino-14,16-dimethyloctadecan-3-ol and avenacein Y were co-occurring. Furthermore, the most prevalent Alternaria toxin was alternariol with a maximum concentration of 449 µg/kg. A number of Penicillium and Aspergillus metabolites were also detected in the samples, e.g., sterigmatocystin in concentrations up to 20 µg/kg.


Environmental Health | 2012

Policy relevant Results from an Expert Elicitation on the Human Health Risks of Decabromodiphenyl ether (decaBDE) and Hexabromocyclododecane (HBCD)

Solveig Ravnum; Karin E. Zimmer; Hans Keune; Arno C. Gutleb; Albertinka J. Murk; Janna G. Koppe; Brooke Magnanti; Jan Ludvig Lyche; Gunnar Sundstøl Eriksen; Erik Ropstad; Janneche Utne Skaare; Michael John Kobernus; Aileen Yang; Alena Bartonova; Martin Krayer von Krauss

AimApply a recently developed expert elicitation procedure to evaluate the state of the current knowledge of the two brominated flame retardants (BFRs) most commonly used today; decabromo-diphenyl ether (decaBDE) and hexabromocyclododecane (HBCD) and their potential impact on human health in order to support policy considerations. This expert elicitation was organized by the HENVINET (Health and Environment Network) Consortium.MethodThe HENVINET expert elicitation procedure that was used in the evaluations of decaBDE and HBCD is a rapid assessment tool aimed at highlighting areas of agreement and areas of disagreement on knowledge-related key issues for environment and health policy decision making.ResultsThe outcome of the expert consultation on BFRs was concrete expert advice for policy makers with specific priorities for further action made clear for both stakeholders and policy makers. The experts were not in agreement whether or not the knowledge currently available on decaBDE or HBCD is sufficient to justify policy actions, but most experts considered that enough data already exists to support a ban or restriction on the use of these compounds. All experts agreed on the necessity of more research on the compounds. Priority issues for further research were, among others:• more studies on the extent of human exposure to the compounds.• more studies on the fate and concentration in the human body of the compounds.


Toxicology Letters | 2012

An in vitro investigation of endocrine disrupting effects of trichothecenes deoxynivalenol (DON), T-2 and HT-2 toxins.

Doreen Ndossi; Caroline Frizzell; N.H. Tremoen; C.K. Faeste; Steven Verhaegen; E. Dahl; Gunnar Sundstøl Eriksen; Morten Sørlie; Lisa Connolly; Erik Ropstad

Trichothecenes are a large family of chemically related mycotoxins. Deoxynivalenol (DON), T-2 and HT-2 toxins belong to this family and are produced by various species of Fusarium. The H295R steroidogenesis assay, regulation of steroidogenic gene expression and reporter gene assays (RGAs) for the detection of androgen, estrogen, progestagen and glucocorticoid (ant)agonist responses, have been used to assess the endocrine disrupting activity of DON, T-2 and HT-2 toxins. H295R cells were used as a model for steroidogenesis and gene expression studies and exposed with either DON (0.1-1000ng/ml), T-2 toxin (0.0005-5ng/ml) or HT-2 toxin (0.005-50ng/ml) for 48h. We observed a reduction in hormone levels in media of exposed cells following radioimmunoassay. Cell viability was determined by four colorimetric assays and we observed reduced cell viability with increasing toxin concentrations partly explaining the significant reduction in hormone levels at the highest toxin concentration of all three trichothecenes. Thirteen of the 16 steroidogenic genes analyzed by quantitative real time PCR (RT-qPCR) were significantly regulated (P<0.05) by DON (100ng/ml), T-2 toxin (0.5ng/ml) and HT-2 toxin (5ng/ml) compared to the control, with reference genes (B2M, ATP5B and ACTB). Whereas HMGR and CYP19 were down-regulated, CYP1A1 and CYP21 were up-regulated by all three trichothecenes. DON further up-regulated CYP17, HSD3B2, CYP11B2 and CYP11B1 and down-regulated NR5A1. T-2 toxin caused down-regulation of NR0B1 and NR5A1 whereas HT-2 toxin induced up-regulation of EPHX and HSD17B1 and down-regulation of CYP11A and CYP17. The expressions of MC2R, StAR and HSD17B4 genes were not significantly affected by any of the trichothecenes in the present study. Although the results indicate that there is no evidence to suggest that DON, T-2 and HT-2 toxins directly interact with the steroid hormone receptors to cause endocrine disruption, the present findings indicate that exposure to DON, T-2 toxin and HT-2 toxin have effects on cell viability, steroidogenesis and alteration in gene expression indicating their potential as endocrine disruptors.


Mutation Research | 2012

Mechanisms involved in alternariol-induced cell cycle arrest

Anita Solhaug; Laura L. Vines; L. Ivanova; B. Spilsberg; Jørn A. Holme; James J. Pestka; Andrew R. Collins; Gunnar Sundstøl Eriksen

Alternariol (AOH), a mycotoxin produced by Alternaria sp, is often found as a contaminant in fruit and cereal products. Here we employed the murine macrophage cell line RAW 264.7 to test the hypothesis that AOH causes toxicity as a response to DNA damage. AOH at concentrations of 15-30μM almost completely blocked cell proliferation. Within 30min treatment, AOH (30μM) significantly increased the level of reactive oxygen species (ROS). Furthermore, DNA base oxidations as well as DNA strand breaks and/or alkaline labile sites were detected by the comet assay after 2h exposure of AOH. Cell death (mostly necrosis) was observed after prolonged exposure to the highest concentration of AOH (60μM for 24 and 48h) in our study. The DNA damage response involved phosphorylation (activation) of histone H2AX and check point kinase-1- and 2 (Chk-1/2). Moreover, AOH activated p53 and increased the expression of p21, Cyclin B, MDM2, and Sestrin 2; likewise the level of several miRNA was affected. AOH-induced Sestrin 2 expression was regulated by p53 and could at least partly be inhibited by antioxidants, suggesting a role of ROS in the response. Interestingly, the addition of antioxidants did not inhibit cell cycle arrest. Although the formation of ROS by itself was not directly linked cell proliferation, AOH-induced DNA damage and resulting transcriptional changes in p21, MDM2, and Cyclin B likely contribute to the reduced cell proliferation; while Sestrin 2 would contribute to the oxidant defense.


Toxicology in Vitro | 2015

Biotransformation of zearalenone and zearalenols to their major glucuronide metabolites reduces estrogenic activity

Caroline Frizzell; Silvio Uhlig; Christopher O. Miles; Steven Verhaegen; Christopher T. Elliott; Gunnar Sundstøl Eriksen; Morten Sørlie; Erik Ropstad; Lisa Connolly

Zearalenone (ZEN) is a mycotoxin produced by Fusarium fungi. Once ingested, ZEN may be absorbed and metabolised to α- and β-zearalenol (α-ZOL, β-ZOL), and to a lesser extent α- and β-zearalanol (α-ZAL, β-ZAL). Further biotransformation to glucuronide conjugates also occurs to facilitate the elimination of these toxins from the body. Unlike ZEN and its metabolites, information regarding the estrogenic activity of these glucuronide conjugates in various tissues is lacking. ZEN-14-O-glucuronide, α-ZOL-14-O-glucuronide, α-ZOL-7-O-glucuronide, β-ZOL-14-O-glucuronide and β-ZOL-16-O-glucuronide, previously obtained as the major products from preparative enzymatic synthesis, were investigated for their potential to cause endocrine disruption through interference with estrogen receptor transcriptional activity. All five glucuronide conjugates showed a very weak agonist response in an estrogen responsive reporter gene assay (RGA), with activity ranging from 0.0001% to 0.01% of that of 17β-estradiol, and also less than that of ZEN, α-ZOL and β-ZOL which have previously shown estrogenic potencies of the order 17β-estradiol>α-ZOL>ZEN>β-ZOL. Confirmatory mass spectrometry revealed that any activity observed was likely a result of minor deconjugation of the glucuronide moiety. This study confirms that formation of ZEN and ZOL glucuronides is a detoxification reaction with regard to estrogenicity, serving as a potential host defence mechanism against ZEN-induced estrogenic activity.


Toxicology and Applied Pharmacology | 2013

An in vitro investigation of endocrine disrupting effects of the mycotoxin alternariol

Caroline Frizzell; Doreen Ndossi; Shewit Kalayou; Gunnar Sundstøl Eriksen; Steven Verhaegen; Morten Sørlie; Christopher T. Elliott; Erik Ropstad; Lisa Connolly

Alternariol (AOH) is a mycotoxin commonly produced by Alternaria alternata on a wide range of foods. Few studies to date have been performed to evaluate the effects of AOH on endocrine activity. The present study makes use of in vitro mammalian cellular based assays and gene expression to investigate the ability of AOH to act as an endocrine disruptor by various modes of action. Reporter gene assays (RGAs), incorporating natural steroid hormone receptors for oestrogens, androgens, progestagens and glucocorticoids were used to identify endocrine disruption at the level of nuclear receptor transcriptional activity, and the H295R steroidogenesis assay was used to assess endocrine disruption at the level of gene expression and steroid hormone production. AOH exhibited a weak oestrogenic response when tested in the oestrogen responsive RGA and binding of progesterone to the progestagen receptor was shown to be synergistically increased in the presence of AOH. H295R cells when exposed to 0.1-1000ng/ml AOH, did not cause a significant change in testosterone and cortisol hormones but exposure to 1000ng/ml (3.87μM) AOH resulted in a significant increase in estradiol and progesterone production. In the gene expression study following exposure to 1000ng/ml (3.87μM) AOH, only one gene NR0B1 was down-regulated, whereas expression of mRNA for CYP1A1, MC2R, HSD3B2, CYP17, CYP21, CYP11B2 and CYP19 was up-regulated. Expression of the other genes investigated did not change significantly. In conclusion AOH is a weak oestrogenic mycotoxin that also has the ability to interfere with the steroidogenesis pathway.


Medical Mycology | 2010

Poisoning of dogs with tremorgenic Penicillium toxins.

Gunnar Sundstøl Eriksen; K. Hultin Jäderlund; Angel Moldes-Anaya; J. Schönheit; Aksel Bernhoft; G. Jæger; Thomas Rundberget; Ida Skaar

Fungi in the genus Penicillium, particularly P. crustosum, produce tremorgenic mycotoxins, as well as suspected tremorgenic compounds. The accidental intoxication of six dogs with such toxins are reported. The clinical signs included vomiting, convulsions, tremors, ataxia, and tachycardia, all of which are indicators of intoxications affecting the nervous system. This symptomatology caused us to think that the dog poisoning was the result of tremorgenic mycotoxins. One dog was euthanized in the acute phase, while three others recovered completely within a few days. However, neurological symptoms were still observed four months after the poisoning of two of the dogs. One of these recovered completely within the next 2-3 months, while the other still suffers from ataxia three years later. Available samples of feed, stomach content and/or tissues from the intoxications were subjected to mycological and chemical analysis. Penitrem A was found in all reported poisonings and roquefortine C in all cases when this toxin was included in the analysis. The producer of these toxins, Penicillium crustosum, was detected in all cases where material suitable for mycological examinations (feed or vomit) was available. To our knowledge, this is the first report documenting the presence of penitrems and roquefortine C in organs from poisoned dogs. Furthermore, the report indicates that the recovery period after severe poisonings with P. crustosum may be protracted.


Journal of Chromatography A | 2009

Determination of cyclopiazonic acid in food and feeds by liquid chromatography-tandem mass spectrometry.

Angel Moldes-Anaya; Tone Normann Asp; Gunnar Sundstøl Eriksen; Ida Skaar; Thomas Rundberget

A new, fast and efficient multiple reaction monitoring (MRM) high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for the determination of cyclopiazonic acid (CPA) in mixed feed, wheat, peanuts and rice is presented. The analytical methodology involves sample extraction with an alkaline methanol-water mixture, defatting with hexane and quantification using HPLC-MS/MS without further treatment of sample extracts. Reversed-phase liquid chromatography using a C18 stationary phase coupled to negative mode electrospray triple quadrupole tandem mass spectrometry was applied. The limit of detection was 5 microg/kg while the limit of quantification was 20 microg/kg in the matrices investigated. The detector response was found to be linear over the range 25-250 microg/kg in feed and 25-500 microg/kg in wheat, peanuts and rice. The mean overall recoveries (n=18) of CPA varied from 79% to 114% in the range of concentrations studied over a period of 4 months. Mean recoveries (n=3 or 6) of CPA in wheat, peanuts and rice varied from 70% to 111%, 77% to 116% and 69% to 92%, respectively. The method was successfully applied to the analysis of feed and rice samples artificially infected with the fungal strain Penicillium commune, where the toxin was found at different levels.

Collaboration


Dive into the Gunnar Sundstøl Eriksen's collaboration.

Top Co-Authors

Avatar

Helle Katrine Knutsen

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Janneche Utne Skåre

National Veterinary Institute

View shared research outputs
Top Co-Authors

Avatar

Jan Alexander

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Anders Ruus

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Anne Lise Brantsæter

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Augustine Arukwe

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Cathrine Thomsen

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Erik Ropstad

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Helle Margrete Meltzer

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge