Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Günter Lepperdinger is active.

Publication


Featured researches published by Günter Lepperdinger.


Aging Cell | 2007

Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan

Christine Fehrer; Regina Brunauer; Gerhard Laschober; Hermann Unterluggauer; Stephan Reitinger; Frank Kloss; Christian Gülly; Robert Gaßner; Günter Lepperdinger

Mesenchymal stem cells (MSC) are capable of differentiating into bone, fat, cartilage, tendon and other organ progenitor cells. Despite the abundance of MSC within the organism, little is known about their in vivo properties or about their corresponding in vivo niches. We therefore isolated MSC from spongy (cancellous) bone biopsies of healthy adults. When compared with the surrounding marrow, a fourfold higher number of colony‐forming units was found within the tight meshwork of trabecular bone surface. At these sites, oxygen concentrations range from 1% to 7%. In MSC cultured at oxygen as low as 3%, rates for cell death and hypoxia‐induced gene transcription remained unchanged, while in vitro proliferative lifespan was significantly increased, with about 10 additional population doublings before reaching terminal growth arrest. However, differentiation capacity into adipogenic progeny was diminished and no osteogenic differentiation was detectable at 3% oxygen. In turn, MSC that had previously been cultured at 3% oxygen could subsequently be stimulated to successfully differentiate at 20% oxygen. These data support our preliminary finding that primary MSC are enriched at the surface of spongy bone. Low oxygen levels in this location provide a milieu that extends cellular lifespan and furthermore is instructive for the stemness of MSC allowing proliferation upon stimulation while suppressing differentiation.


Journal of Biological Chemistry | 1998

HYAL2, a Human Gene Expressed in Many Cells, Encodes a Lysosomal Hyaluronidase with a Novel Type of Specificity

Günter Lepperdinger; Birgit Strobl; Günther Kreil

Using Expressed Sequence Tags (ESTs) deposited in the data banks, a cDNA has been assembled that encodes a protein related to the hyaluronidases from bee venom and mammalian sperm. Expression of this cDNA yielded a polypeptide termed HYAL2, which is located in lysosomes. The HYAL2 protein was shown to have hyaluronidase activity below pH 4. However, it only hydrolyzed hyaluronan of high molecular mass from umbilical cord, rooster comb, and a Streptococcus strain. The reaction product was a polysaccharide of about 20 kDa, which was further hydrolyzed to small oligosaccharides by the sperm hyaluronidase. Conversely, hyaluronan fragments from vitreous humor, which had a molecular mass of about 20 kDa, were not cleaved by the HYAL2 enzyme to any detectable extent. These results provide evidence for the existence of structural domains in hyaluronan, which are resistant to the action of this enzyme. The structural and functional implications of these findings are discussed.


Aging Cell | 2010

miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human aging.

Matthias Hackl; Stefan Brunner; Klaus Fortschegger; Carina Schreiner; Lucia Micutkova; Christoph Mück; Gerhard Laschober; Günter Lepperdinger; Natalie Sampson; Peter Berger; Dietmar Herndler-Brandstetter; Matthias Wieser; Harald Kühnel; Alois Strasser; Mark Rinnerthaler; Michael Breitenbach; Michael Mildner; Leopold Eckhart; Erwin Tschachler; Andrea Trost; Johann W. Bauer; Christine Papak; Zlatko Trajanoski; Marcel Scheideler; Regina Grillari-Voglauer; Beatrix Grubeck-Loebenstein; Pidder Jansen-Dürr; Johannes Grillari

Aging is a multifactorial process where deterioration of body functions is driven by stochastic damage while counteracted by distinct genetically encoded repair systems. To better understand the genetic component of aging, many studies have addressed the gene and protein expression profiles of various aging model systems engaging different organisms from yeast to human. The recently identified small non‐coding miRNAs are potent post‐transcriptional regulators that can modify the expression of up to several hundred target genes per single miRNA, similar to transcription factors. Increasing evidence shows that miRNAs contribute to the regulation of most if not all important physiological processes, including aging. However, so far the contribution of miRNAs to age‐related and senescence‐related changes in gene expression remains elusive. To address this question, we have selected four replicative cell aging models including endothelial cells, replicated CD8+ T cells, renal proximal tubular epithelial cells, and skin fibroblasts. Further included were three organismal aging models including foreskin, mesenchymal stem cells, and CD8+ T cell populations from old and young donors. Using locked nucleic acid‐based miRNA microarrays, we identified four commonly regulated miRNAs, miR‐17 down‐regulated in all seven; miR‐19b and miR‐20a, down‐regulated in six models; and miR‐106a down‐regulated in five models. Decrease in these miRNAs correlated with increased transcript levels of some established target genes, especially the cdk inhibitor p21/CDKN1A. These results establish miRNAs as novel markers of cell aging in humans.


Experimental Gerontology | 2005

Mesenchymal stem cell aging.

Christine Fehrer; Günter Lepperdinger

Stem cells are located throughout the adult body of higher organisms, supporting a continuous renewal and repair of tissues. Unique abilities of stem cells are self-renewal and multipotential differentiation. It is, therefore, of critical importance for an organism to maintain and control quantity and quality of stem cells within a given pool. Otherwise, when something goes awry within a stem cell, it is likely to have far-reaching effects. Mesenchymal stem cells (MSC) derived from various sources such as bone marrow or fat have been expanded in culture and differentiated in vitro into several lineages such as adipocytes, osteocytes or chondrocytes. In particular, aged human MSC show a decline in differentiation potential as well as in proliferation rate. The latter most likely reflects the fact that aged MSC suffer from eroded telomeres. Besides the individual age of the cell, stem and progenitor cell functions are influenced by the cellular environment, i.e. the niche and the architecture of the tissue, they reside in. This contribution reviews current knowledge about MSC aging (in vitro or in vivo), and respective difficulties for tissue engineering and stem cell therapy.


Matrix Biology | 2001

Hyal2-less active, but more versatile?

Günter Lepperdinger; Johannes Müllegger; Günther Kreil

Hyal2 is one of several hyaluronidases present in vertebrates. The human gene encoding this enzyme is present on chromosome 3p.21.3, close to two additional hyaluronidase genes. cDNAs encoding Hyal2 homologues have been characterized from mouse and Xenopus laevis. These enzymes hydrolyze high molecular mass hyaluronan to intermediates of approximately 20 kDa, a finding which implies that structural domains of this size exist in this polysaccharide which was mostly thought to be a random coil. Hyal2 enzymes have an acidic pH-optimum with an activity that is considerably lower than observed for other types of hyaluronidases. Originally considered to be a typical lysosomal enzyme, more recent evidence has shown that Hyal2 proteins can also be exposed on the cell surface bound to the plasma membrane via a GPI anchor. Hyal2 is present in many tissues, one exception being the adult brain. In this tissue, the gene is silenced after birth by methylation. Current evidence about the role of Hyal2 in tumor growth, inflammation and frog embryogenesis is discussed.


FEBS Letters | 1999

The mammalian homologues of frog Bv8 are mainly expressed in spermatocytes.

Christian Wechselberger; Rossella Puglisi; Edwin Engel; Günter Lepperdinger; Carla Boitani; Günther Kreil

Bv8, a protein from skin secretions of Bombina variegata, reacts with receptors present in mammalian brain and intestine (Mollay et al. (1999) Eur. J. Pharmacol. 374, 189–196). As deduced from cloned cDNAs, the murine and human Bv8 homologues have identical amino‐terminal sequences and also contain 10 cysteines. From mouse testes, two forms of Bv8 mRNA have been characterized, of which one contains an additional exon which codes for 21 mostly basic amino acids. The mouse Bv8 gene is most active in mid‐late pachytene spermatocytes. In mouse testes, Bv8 mRNA can first be detected at the end of the second week post partum.


Current Opinion in Immunology | 2011

Inflammation and mesenchymal stem cell aging

Günter Lepperdinger

Highlights ► MSC regulatory networks gradually deteriorate with advancing age. ► MSC and HSC jointly share a stem cell niche in the bone marrow. ► MSC specifically interact with immune cells and secrete immunoregulatory molecules. ► Chronic inflammation of the MSC microenvironment leads to adverse manifestations. ► MSC in an aging environment perturb both tissue homeostasis and immunology.


European Journal of Neuroscience | 2001

The mammalian homologue of the novel peptide Bv8 is expressed in the central nervous system and supports neuronal survival by activating the MAP kinase/PI-3-kinase pathways.

Daniela Melchiorri; Valeria Bruno; Gilbert Besong; Richard Teke Ngomba; L. Cuomo; A. De Blasi; Agata Copani; C. Moschella; Marianna Storto; Ferdinando Nicoletti; Günter Lepperdinger; Francesca Passarelli

Previous studies have identified the mammalian homologue of Bv8 (mBv8), a small protein originally isolated from skin secretions of the frog, Bombina variegata. In situ hybridization showed that mBv8 RNA was widely expressed in the rodent CNS, with high levels being detected in layer II of the cerebral cortex, limbic regions, cerebellar Purkinje cells, and dorsal and ventral horns of the spinal cord. A similar pattern of distribution was found by examining the presence of mBv8 protein by immunocytochemistry. Addition of frog Bv8 to cultured cerebellar granule cells reduced the extent of apoptotic death induced by switching the growing medium from 25 to 5 mm K+. Bv8 could also protect cultured cortical neurons against excitotoxic death. Both effects were prevented by PD98059 and LY294002, which inhibit the mitogen‐activated protein kinase (MAPK) and phosphatidylinositol‐3‐kinase (PI‐3‐K) pathways, respectively. In cultured cerebellar granule cells, Bv8 stimulated both the MAPK and the PI‐3‐K pathways, as revealed by Western blot analysis of phosphorylated p44/p42 MAPKs and phosphorylated Akt, respectively. We conclude that mBv8 acts as an endogenous neurotrophic factor and supports neuronal survival through the activation of the MAPK/PI‐3‐K pathways.


Journal of Immunology | 2011

Human Bone Marrow Hosts Polyfunctional Memory CD4+ and CD8+ T Cells with Close Contact to IL-15–Producing Cells

Dietmar Herndler-Brandstetter; Katja Landgraf; Brigitte Jenewein; Alexandar Tzankov; Regina Brunauer; Stefan Brunner; Walther Parson; Frank Kloss; Robert Gassner; Günter Lepperdinger; Beatrix Grubeck-Loebenstein

Recently, a key role in memory T cell homing and survival has been attributed to the bone marrow (BM) in mice. In the human BM, the repertoire, function, and survival niches of CD4+ and CD8+ T cells have not yet been elucidated. In this study, we demonstrate that CD4+ and CD8+ effector memory T cells accumulate in the human BM and are in a heightened activation state as revealed by CD69 expression. BM-resident memory T cells produce more IFN-γ and are frequently polyfunctional. Immunofluorescence analysis revealed that CD4+ and CD8+ T cells are in the immediate vicinity of IL-15–producing BM cells, suggesting a close interaction between these two cell types and a regulatory role of IL-15 on T cells. Accordingly, IL-15 induced an identical pattern of CD69 expression in peripheral blood CD4+ and CD8+ T cell subsets. Moreover, the IL-15–inducible molecules Bcl-xL, MIP-1α, MIP-1β, and CCR5 were upregulated in the human BM. In summary, our results indicate that the human BM microenvironment, in particular IL-15–producing cells, is important for the maintenance of a polyfunctional memory CD4+ and CD8+ T cell pool.


Journal of Immunology | 2005

CD25-Expressing CD8+ T Cells Are Potent Memory Cells in Old Age

Dietmar Herndler-Brandstetter; Susanne Schwaiger; Ellen Veel; Christine Fehrer; Daniel Cioca; Giovanni Almanzar; Michael Keller; Gerald Pfister; Walther Parson; Reinhard Würzner; Diether Schönitzer; Sian M. Henson; Richard Aspinall; Günter Lepperdinger; Beatrix Grubeck-Loebenstein

We have recently described an IL-2/IL-4-producing CD8+CD25+ nonregulatory memory T cell population that occurs in a subgroup of healthy elderly persons who characteristically still have a good humoral response after vaccination. The present study addresses this specific T cell subset and investigates its origin, clonal composition, Ag specificity, and replicative history. We demonstrate that CD8+CD25+ memory T cells frequently exhibit a CD4+CD8+ double-positive phenotype. The expression of the CD8 αβ molecule and the occurrence of signal-joint TCR rearrangement excision circles suggest a thymic origin of these cells. They also have longer telomeres than their CD8+CD25− memory counterparts, thus indicating a shorter replicative history. CD8+CD25+ memory T cells display a polyclonal TCR repertoire and respond to IL-2 as well as to a panel of different Ags, whereas the CD8+CD25− memory T cell population has a more restricted TCR diversity, responds to fewer Ags, and does not proliferate in response to stimulation with IL-2. Molecular tracking of specific clones with clonotypic primers reveals that the same clones occur in CD8+CD25+ and CD8+CD25− memory T cell populations, demonstrating a lineage relationship between CD25+ and CD25− memory CD8+ T cells. Our results suggest that CD25-expressing memory T cells represent an early stage in the differentiation of CD8+ cells. Accumulation of these cells in elderly persons appears to be a prerequisite of intact immune responsiveness in the absence of naive T cells in old age.

Collaboration


Dive into the Günter Lepperdinger's collaboration.

Top Co-Authors

Avatar

Gerhard Laschober

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Regina Brunauer

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Christine Fehrer

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Stephan Reitinger

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Kloss

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Angelika Jamnig

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johannes Müllegger

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge