Günter Meinardus
University of Mannheim
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Günter Meinardus.
Archive for Rational Mechanics and Analysis | 1964
Günter Meinardus
Es sei B ein Kompaktum und C(B) der lineare Raum der auf B stetigen, reell- oder und komplexwertigen Funktionen f(x), der mit der Tschebyscheff-Norm
Transactions of the American Mathematical Society | 1972
Günter Meinardus; A.R Reddy; G. D. Taylor; Richard S. Varga
Archive | 1978
Günter Meinardus; G. Merz
||f|| = \mathop {Max}\limits_{x \in B} ||f(x)||
Archive | 1980
Günter Meinardus; Gerhard Merz
Computing | 1966
Günter Meinardus
versehen sei. Haufig ist das folgende Approximationsproblem von Bedeutung: Es sei eine Parametermenge A von Elementen a, b, ...gegeben.
Computing | 1971
Günter Meinardus
Recently, it has been shown that the problem of rational approximation to e~~ in [O, + <*>) arises naturally in numerical methods for approximating solutions of heat-conduction-type partial differential equations [l] , [2]. This special approximation problem leads one to the general question of approximating functions on the half line [0, + 00 ). In this paper we wish to announce two results of this study which are in the spirit of work done by S. N. Bernstein. A complete description of this work with proofs of these results and additional results will appear elsewhere. In order to state these results, we need the following notation. For any nonnegative integer w, let irm denote the collection of all real polynomials of degree at most m. For given r>0 and s> 1, let S(r, s) denote the unique open ellipse in the complex plane with foci at x = 0 and x = r and semimajor and semiminor axes a and b such that b/a = (s — l)/(s+l). Finally, if f(z) is any entire function, we set
Bit Numerical Mathematics | 1998
Günter Meinardus; Guido Walz
Es sei CN der lineare Raum der auf der reellen Achse stetigen Funktionen mit der Periode N und S N 2k−1 der lineare Raum der Splinefunktionen der Periode N und vom Grad 2k−1, deren Knoten in den ganzen Zahlen liegen (k, N∈ℕ). Zu vorgegebenem f∈CN besitzt das Interpolationsproblem
Results in Mathematics | 1994
Lothar Berg; Günter Meinardus
Advances in Computational Mathematics | 1996
Günter Meinardus; Günther Nürnberger; Guido Walz
s(v) = f(v),v \in Z
Computers & Mathematics With Applications | 1997
Günter Meinardus