Gunter Menz
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gunter Menz.
Precision Agriculture | 2007
Jonas Franke; Gunter Menz
For the implementation of site-specific fungicide applications, the spatio-temporal dynamics of crop diseases must be well known. Remote sensing can be a useful tool to monitor the heterogeneity of crop vitality within agricultural sites. However, the identification of fungal infections at an early growth stage is essential. This study examines the potential of multi-spectral remote sensing for a multi-temporal analysis of crop diseases. Within an experimental field, a 6 ha plot of winter wheat was grown, containing all possible infective stages of the powdery mildew (Blumeria graminis) and leaf rust (Puccinia recondita) pathogens. Three high-resolution remote sensing images were used to execute a spatio-temporal analysis of the infection dynamics. A decision tree, using mixture tuned matched filtering (MTMF) results and the Normalized Difference Vegetation Index (NDVI), was applied to classify the data into areas showing different levels of disease severity. Classification results were compared to ground truth data. The classification accuracy of the first scene was only 56.8%, whereas the scenes from May 28th and June 20th achieved considerably higher accuracies of 65.9% and 88.6% respectively. The results showed that high-resolution multi-spectral data are generally suitable to detect in-field heterogeneities of crop vigour but are only moderately suitable for early detection of crop infections.
Archive | 2014
Erich-Christian Oerke; Roland Gerhards; Gunter Menz; Richard A. Sikora
Precision farming is an agricultural management system using global navigation satellite systems, geographic information systems, remote sensing, and data management systems for optimizing the use of nutrients, water, seed, pesticides and energy in heterogeneous field situations. This book provides extensive information on the state-of-the-art of research on precision crop protection and recent developments in site-specific application technologies for the management of weeds, arthropod pests, pathogens and nematodes. It gives the reader an up-to-date and in-depth review of both basic and applied research developments. The chapters discuss I) biology and epidemiology of pests, II) new sensor technologies, III) applications of multi-scale sensor systems, IV) sensor detection of pests in growing crops, V) spatial and non-spatial data management, VI) impact of pest heterogeneity and VII) precise mechanical and chemical pest control.
Remote Sensing | 2015
Andreas Burkart; Helge Aasen; Luis Alonso; Gunter Menz; Georg Bareth; Uwe Rascher
In this study we present a hyperspectral flying goniometer system, based on a rotary-wing unmanned aerial vehicle (UAV) equipped with a spectrometer mounted on an active gimbal. We show that this approach may be used to collect multiangular hyperspectral data over vegetated environments. The pointing and positioning accuracy are assessed using structure from motion and vary from σ = 1° to 8° in pointing and σ = 0.7 to 0.8 m in positioning. We use a wheat dataset to investigate the influence of angular effects on the NDVI, TCARI and REIP vegetation indices. Angular effects caused significant variations on the indices: NDVI = 0.83–0.95; TCARI = 0.04–0.116; REIP = 729–735 nm. Our analysis highlights the necessity to consider angular effects in optical sensors when observing vegetation. We compare the measurements of the UAV goniometer to the angular modules of the SCOPE radiative transfer model. Model and measurements are in high accordance (r2 = 0.88) in the infrared region at angles close to nadir; in contrast the comparison show discrepancies at low tilt angles (r2 = 0.25). This study demonstrates that the UAV goniometer is a promising approach for the fast and flexible assessment of angular effects.
International Journal of Applied Earth Observation and Geoinformation | 2013
Emiliana Mwita; Gunter Menz; Salome Misana; Mathias Becker; D. Kisanga; Beate Boehme
Abstract Although wetlands in Tanzania and Kenya have great potentials for agricultural production and a multitude of uses, many of them are not even documented on official maps. Lack of official recognition has done little in preventing there over utilization. As the wetlands continue to play remarkable roles in the movement of people and terrestrial species in the region, it is important that they are monitored and properly managed. This study was undertaken in Usambara highlands and the Pangani floodplain in Tanzania, the Mount Kenya highlands and Laikipia floodplain in Kenya to map the different types of wetlands in terms of their size, density, spatial distribution and use patterns. Remote sensing techniques and field surveys were adopted, and 51 wetlands were identified in flood plains within the semi-arid and sub-humid lowlands, and inland valleys in the region. The detailed maps generated showed the intensity of wetland use, inland valleys being the most intensively used, and are useful in monitoring changes in wetlands for their effective management. The use of multispatial resolution imagery, combined with field survey and GIS produced satisfactory results for the delineation and mapping of small wetlands and their uses.
Precision Agriculture | 2011
Thorsten Mewes; Jonas Franke; Gunter Menz
Remote sensing approaches are of increasing importance for agricultural applications, particularly for the support of selective agricultural measures that increase the productivity of crop stands. In contrast to multi-spectral image data, hyperspectral data has been shown to be highly suitable for the detection of crop growth anomalies, since they allow a detailed examination of stress-dependent changes in certain spectral ranges. However, the entire spectrum covered by hyperspectral data is probably not needed for discrimination between healthy and stressed plants. To define an optimal sensor-based system or a data product designed for crop stress detection, it is necessary to know which spectral wavelengths are significantly affected by stress factors and which spectral resolution is needed. In this study, a single airborne hyperspectral HyMap dataset was analyzed for its potential to detect plant stress symptoms in wheat stands induced by a pathogen infection. The Bhattacharyya distance (BD) with a forward feature search strategy was used to select relevant bands for the differentiation between healthy and fungal infected stands. Two classification algorithms, i.e. spectral angle mapper (SAM) and support vector machines (SVM) were used to classify the data covering an experimental field. Thus, the original dataset as well as datasets reduced to several band combinations as selected by the feature selection approach were classified. To analyze the influence of the spectral resolution on the detection accuracy, the original dataset was additionally stepwise spectrally resampled and a feature selection was carried out on each step. It is demonstrated that just a few phenomenon-specific spectral features are sufficient to detect wheat stands infected with powdery mildew. With original spectral resolution of HyMap, the highest classification accuracy could be obtained by using only 13 spectral bands with a Kappa coefficient of 0.59 in comparison to Kappa 0.57 using all spectral bands of the HyMap sensor. The results demonstrate that even a few hyperspectral bands as well as bands with lower spectral resolution still allow an adequate detection of fungal infections in wheat. By focusing on a few relevant bands, the detection accuracy could be enhanced and thus more reliable information could be extracted which may be helpful in agricultural practice.
Remote Sensing | 2005
Jonas Franke; Gunter Menz; Erich-Christian Oerke; Uwe Rascher
In the context of precision agriculture, several recent studies have focused on detecting crop stress caused by pathogenic fungi. For this purpose, several sensor systems have been used to develop in-field-detection systems or to test possible applications of remote sensing. The objective of this research was to evaluate the potential of different sensor systems for multitemporal monitoring of leaf rust (puccinia recondita) infected wheat crops, with the aim of early detection of infected stands. A comparison between a hyperspectral (120 spectral bands) and a multispectral (3 spectral bands) imaging system shows the benefits and limitations of each approach. Reflectance data of leaf rust infected and fungicide treated control wheat stand boxes (1sqm each) were collected before and until 17 days after inoculation. Plants were grown under controlled conditions in the greenhouse and measurements were taken under consistent illumination conditions. The results of mixture tuned matched filtering analysis showed the suitability of hyperspectral data for early discrimination of leaf rust infected wheat crops due to their higher spectral sensitivity. Five days after inoculation leaf rust infected leaves were detected, although only slight visual symptoms appeared. A clear discrimination between infected and control stands was possible. Multispectral data showed a higher sensitivity to external factors like illumination conditions, causing poor classification accuracy. Nevertheless, if these factors could get under control, even multispectral data may serve a good indicator for infection severity.
Remote Sensing | 2014
Julia Tüshaus; Olena Dubovyk; Asia Khamzina; Gunter Menz
Abstract: Accurate monitoring of land surface dynamics using remote sensing is essential for the synoptic assessment of environmental change. We assessed a Medium Resolution Imaging Spectrometer (MERIS) full resolution dataset for vegetation monitoring as an alternative to the more commonly used Moderate-Resolution Imaging Spectroradiometer (MODIS) data. Time series of vegetation indices calculated from 300 m resolution MERIS and 250 m resolution MODIS datasets were analyzed to monitor vegetation productivity trends in the irrigated lowlands in Northern Uzbekistan for the period 2003–2011. Mann-Kendall trend analysis was conducted using the time series of Normalized Differenced Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and MERIS-based Terrestrial Chlorophyll Index (MTCI) to detect trends and examine the capabilities of each sensor and index. The methodology consisted of (1) preprocessing of the original imagery; (2) processing and statistical analysis of the corresponding time series datasets; and (3) comparison of the resulting trends. Results confirmed the occurrence of widespread vegetation productivity decline, ranging from 5.5% (MERIS-MTCI) to 21% (MODIS-NDVI) of the total irrigated cropland in the study area. All indices identified
Remote Sensing | 2015
Muhammad Ali; Carsten Montzka; Anja Stadler; Gunter Menz; Frank Thonfeld; Harry Vereecken
Leaf Area Index (LAI) is an important variable for numerous processes in various disciplines of bio- and geosciences. In situ measurements are the most accurate source of LAI among the LAI measuring methods, but the in situ measurements have the limitation of being labor intensive and site specific. For spatial-explicit applications (from regional to continental scales), satellite remote sensing is a promising source for obtaining LAI with different spatial resolutions. However, satellite-derived LAI measurements using empirical models require calibration and validation with the in situ measurements. In this study, we attempted to validate a direct LAI retrieval method from remotely sensed images (RapidEye) with in situ LAI (LAIdestr). Remote sensing LAI (LAIrapideye) were derived using different vegetation indices, namely SAVI (Soil Adjusted Vegetation Index) and NDVI (Normalized Difference Vegetation Index). Additionally, applicability of the newly available red-edge band (RE) was also analyzed through Normalized Difference Red-Edge index (NDRE) and Soil Adjusted Red-Edge index (SARE). The LAIrapideye obtained from vegetation indices with red-edge band showed better correlation with LAIdestr (r = 0.88 and Root Mean Square Devation, RMSD = 1.01 & 0.92). This study also investigated the need to apply radiometric/atmospheric correction methods to the time-series of RapidEye Level 3A data prior to LAI estimation. Analysis of the the RapidEye Level 3A data set showed that application of the radiometric/atmospheric correction did not improve correlation of the estimated LAI with in situ LAI.
Archive | 2014
Antje Hecheltjen; Frank Thonfeld; Gunter Menz
Change detection is a key methodology in remote sensing. Despite numerous important papers dedicated to this topic no comprehensive review of the subject currently exists. Most existing reviews are limited to certain fields of application or are simply no longer current. Here, we provide an overview of the most important algorithms used for change detection and their development and refinement through time. Change detection cannot be considered as a mere algorithm. We thus describe all of the steps necessary to perform change detection as part of a process chain. We also show how such a change detection process chain may be adapted to specific individual requirements. The labeling of changes is recognized as a basic part of this process. Three change labeling categories are introduced: (1) pre-change extraction labeling, (2) concurrent labeling, and (3) post-change extraction labeling. Methods developed specifically for use with synthetic aperture radar (SAR) data are a focus of this review. SAR data provide information compatible with data produced by optical sensors, but also often require specialized processing techniques and are useful within a unique field of application. An examination of time series analysis methods is also included in this review. To date, these techniques have not been considered in reviews, but the increasing availability of remote sensing data as well as recent advances in remote sensing change detection make it essential that they are included here. Although not exhaustive, this review is intended to provide a comprehensive overview of well established change detection methods as well as recent advances in this field.
Monthly Weather Review | 2006
Heiko Paeth; Robin Girmes; Gunter Menz; Andreas Hense
Abstract Seasonal forecast of climate anomalies holds the prospect of improving agricultural planning and food security, particularly in the low latitudes where rainfall represents a limiting factor in agrarian production. Present-day methods are usually based on simulated precipitation as a predictor for the forthcoming rainy season. However, climate models often have low skill in predicting rainfall due to the uncertainties in physical parameterization. Here, the authors present an extended statistical model approach using three-dimensional dynamical variables from climate model experiments like temperature, geopotential height, wind components, and atmospheric moisture. A cross-validated multiple regression analysis is applied in order to fit the model output to observed seasonal precipitation during the twentieth century. This model output statistics (MOS) system is evaluated in various regions of the globe with potential predictability and compared with the conventional superensemble approach, which ...