Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Günter Tremp is active.

Publication


Featured researches published by Günter Tremp.


American Journal of Pathology | 2004

Massive CA1/2 Neuronal Loss with Intraneuronal and N-Terminal Truncated Aβ42 Accumulation in a Novel Alzheimer Transgenic Model

Caty Casas; Nicolas Sergeant; Jean-Michel Itier; Véronique Blanchard; Oliver Wirths; Nicolien Van Der Kolk; Valérie Vingtdeux; Evita van de Steeg; Gwénaëlle Ret; Thierry Canton; Hervé Drobecq; Allan Clark; Bruno Bonici; André Delacourte; Jesus Benavides; Christoph Schmitz; Günter Tremp; Thomas A. Bayer; Patrick Benoit; Laurent Pradier

Alzheimers disease (AD) is characterized by a substantial degeneration of pyramidal neurons and the appearance of neuritic plaques and neurofibrillary tangles. Here we present a novel transgenic mouse model, APP(SL)PS1KI that closely mimics the development of AD-related neuropathological features including a significant hippocampal neuronal loss. This transgenic mouse model carries M233T/L235P knocked-in mutations in presenilin-1 and overexpresses mutated human beta-amyloid (Abeta) precursor protein. Abeta(x-42) is the major form of Abeta species present in this model with progressive development of a complex pattern of N-truncated variants and dimers, similar to those observed in AD brain. At 10 months of age, an extensive neuronal loss (>50%) is present in the CA1/2 hippocampal pyramidal cell layer that correlates with strong accumulation of intraneuronal Abeta and thioflavine-S-positive intracellular material but not with extracellular Abeta deposits. A strong reactive astrogliosis develops together with the neuronal loss. This loss is already detectable at 6 months of age and is PS1KI gene dosage-dependent. Thus, APP(SL)PS1KI mice further confirm the critical role of intraneuronal Abeta(42) in neuronal loss and provide an excellent tool to investigate therapeutic strategies designed to prevent AD neurodegeneration.


Neuroscience Letters | 2001

Intraneuronal Aβ accumulation precedes plaque formation in β-amyloid precursor protein and presenilin-1 double-transgenic mice

Oliver Wirths; Gerd Multhaup; Christian Czech; Véronique Blanchard; Saliha Moussaoui; Günter Tremp; Laurent Pradier; Konrad Beyreuther; Thomas A. Bayer

beta-Amyloid peptides are key molecules that are involved in the pathology of Alzheimers disease (AD). The source and place of the neurotoxic action of Abeta, however, is still a matter of controversial debates. In the present report, we studied the neuropathological events in a transgenic mouse model expressing human mutant beta-amyloid precursor protein and human mutant presenilin-1 in neurons. Western blot and immunohistochemical analysis revealed that intracellular Abeta staining preceded plaque deposition, which started in the hippocampal formation. At later stages, many neuritic Abeta positive plaques were found in all cortical, hippocampal and many other brain areas. Interestingly, intraneuronal Abeta staining was no longer detected in the brain of aged double-transgenic mice, which correlates with the typical neuropathology in the brain of chronic AD patients.


Experimental Neurology | 2003

Time sequence of maturation of dystrophic neurites associated with Aβ deposits in APP/PS1 transgenic mice

Véronique Blanchard; Saliha Moussaoui; Christian Czech; Nathalie Touchet; Bruno Bonici; Michel Planche; Thierry Canton; Iness Jedidi; Micheline Gohin; Oliver Wirths; Thomas A. Bayer; Dominique Langui; Charles Duyckaerts; Günter Tremp; Laurent Pradier

Several novel transgenic mouse models expressing different mutant APPs in combination with mutant PS1 have been developed. These models have been analyzed to investigate the formation and progressive alterations of dystrophic neurites (DNs) in relation to Abeta deposits. In the most aggressive model, Abeta deposits appear as early as 2.5 months of age. Maturation of DNs was qualitatively quite similar among models and in some respect reminiscent of human AD pathology. From the onset of deposition, most if not all Abeta deposits were decorated with a high number of APP-, ubiquitin-, and MnSOD-immunoreactive DNs. Phosphorylated Tau DNs, however, appeared at a much slower rate and were more restricted. Mitochondrial dysfunction markers were observed in DNs: the frequency and the density per deposit of DNs accumulating cytochrome c, cytochrome oxidase 1, and Bax progressively increased with age. Later, the burden of reactive DNs was reduced around large compact/mature deposits. In addition, the previously described phenomenon of early intraneuronal Abeta accumulation in our models was associated with altered expression of APP protein as well as oxidative and mitochondrial stress markers occasionally in individual neurons. The present study demonstrates that oxidative and mitochondrial stress factors are present at several phases of Abeta pathology progression, confirming the neuronal dysfunction in APP transgenic mice.


Science | 1996

Protection Against Atherogenesis in Mice Mediated by Human Apolipoprotein A-IV

Nicolas Duverger; Günter Tremp; Jean-Michel Caillaud; Florence Emmanuel; Graciela Castro; Jean-Charles Fruchart; Armin Steinmetz; Patrice Denefle

Apolipoproteins are protein constituents of plasma lipid transport particles. Human apolipoprotein A-IV (apoA-IV) was expressed in the liver of C57BL/6 mice and mice deficient in apoE, both of which are prone to atherosclerosis, to investigate whether apoA-IV protects against this disease. In transgenic C57BL/6 mice on an atherogenic diet, the serum concentration of high density lipoprotein (HDL) cholesterol increased by 35 percent, whereas the concentration of endogenous apoA-I decreased by 29 percent, relative to those in transgenic mice on a normal diet. Expression of human apoA-IV in apoE-deficient mice on a normal diet resulted in an even more severe atherogenic lipoprotein profile, without affecting the concentration of HDL cholesterol, than that in nontransgenic apoE-deficient mice. However, transgenic mice of both backgrounds showed a substantial reduction in the size of atherosclerotic lesions. Thus, apoA-IV appears to protect against atherosclerosis by a mechanism that does not involve an increase in HDL cholesterol concentration.


American Journal of Pathology | 1999

Transgenic expression of the shortest human tau affects its compartmentalization and its phosphorylation as in the pretangle stage of Alzheimer's disease.

Jean Pierre Brion; Günter Tremp; Jean-Noël Octave

We have generated transgenic mice expressing the shortest human tau protein, the microtubule-associated protein that composes paired helical filaments in Alzheimers disease. Transgenic tau transcripts and proteins were strongly expressed in neurons in the developing and adult brain. In contrast to the endogenous tau that progressively disappeared from neuronal cell bodies during development, the human transgenic tau remained abundant in cell bodies and dendrites of a subset of neurons in the adult. This somatodendritic transgenic tau was immunoreactive with antibodies to tau phosphorylated on Thr181 and Thr231 and with the conformation-dependent Alz50 antibody. A few astrocytes expressing the transgenic tau were strongly immunoreactive with antibodies to additional tau phosphorylation sites, ie, at Ser262/ 356 and Ser396/404. All of these phosphorylation sites have been identified in paired helical filaments-tau proteins. In electron microscopy, the transgenic tau was detected into microtubules in axons and in dendrites but not in cell bodies. Neurofibrillary tangles were not detected in transgenic animals examined up to the age of 19 months. These results indicate that transgenic manipulation of tau expression and intracellular targeting is sufficient per se to affect tau compartmentalization, phosphorylation, and conformation partly as it is observed at the pretangle stage in Alzheimers disease.


Progress in Neurobiology | 2000

Presenilins and Alzheimer’s disease: biological functions and pathogenic mechanisms

Christian Czech; Günter Tremp; Laurent Pradier

Alzheimers disease (AD) is the most common cause of dementia in the elderly population. Dementia is associated with massive accumulation of fibrillary aggregates in various cortical and subcortical regions of the brain. These aggregates appear intracellularly as neurofibrillary tangles, extracellularly as amyloid plaques and perivascular amyloid in cerebral blood vessels. The causative factors in AD etiology implicate both, genetic and environmental factors. The large majority of early-onset familial Alzheimers disease (FAD) cases are linked to mutations in the genes coding for presenilin 1 (PS1) and presenilin 2 (PS2). The corresponding proteins are 467 (PS1) and 448 (PS2) amino-acids long, respectively. Both are membrane proteins with multiple transmembrane regions. Presenilins show a high degree of conservation between species and a presenilin homologue with definite conservation of the hydrophobic structure has been identified even in the plant Arabidopsis thaliana. More than 50 missense mutations in PS1 and two missense mutations in PS2 were identified which are causative for FAD. PS mutations lead to the same functional consequence as mutations on amyloid precursor protein (APP), altering the processing of APP towards the release of the more amyloidogenic form 1-42 of Abeta (Abeta42). In this regard, the physical interaction between APP and presenilins in the endoplasmic reticulum has been demonstrated and might play a key role in Abeta42 production. It was hypothesized that PS1 might directly cleave APP. However, extracellular amyloidogenesis and Abeta production might not be the sole factor involved in AD pathology and several lines of evidence support a role of apoptosis in the massive neuronal loss observed. Presenilins were shown to modify the apoptotic response in several cellular systems including primary neuronal cultures. Some evidence is accumulating which points towards the beta-catenin signaling pathways to be causally involved in presenilin mediated cell death. Increased degradation of beta-catenin has been shown in brain of AD patients with PS1 mutations and reduced beta-catenin signaling increased neuronal vulnerability to apoptosis in cell culture models. The study of presenilin physiological functions and the pathological mechanisms underlying their role in pathogenesis clearly advanced our understanding of cellular mechanisms underlying the neuronal cell death and will contribute to the identification of novel drug targets for the treatment of AD.


Brain Pathology | 2006

Intraneuronal APP/Aβ Trafficking and Plaque Formation in β-Amyloid Precursor Protein and Presenilin-1 Transgenic Mice

Oliver Wirths; Gerd Multhaup; Christian Czech; Nicole Feldmann; Véronique Blanchard; Günter Tremp; Konrad Beyreuther; Laurent Pradier; Thomas A. Bayer

Neuropil deposition of β‐amyloid peptides Aβ40 and Aβ42 is believed to be the key event in the neurodegenerative processes of Alzheimers disease (AD). Since Aβ seems to carry a transport signal that is required for axonal sorting of its precursor β‐amyloid precursor protein (APP), we studied the intraneuronal staining profile of Aβ peptides in a transgenic mouse model expressing human mutant APP751 (KM670/671NL and V717I) and human mutant presenilin‐1 (PS‐1 M146L) in neurons. Using surface plasmon resonance we analyzed the Aβ antibodies and defined their binding profile to APP, Aβ40 and Aβ42. Immunohistochemical staining revealed that intraneuronal Aβ40 and Aβ42 staining preceded plaque deposition, which started at 3 months of age. Aβ was observed in the somatodendritic and axonal compartments of many neurons. Interestingly, the striatum, which lacks transgenic APP expression harbored many plaques at 10 months of age. This is most likely due to an APP/Aβ transport problem and may be a model region to study APP/Aβ trafficking as an early pathological event.


Nature | 1998

Imprinted gene in postnatal growth role

Jean-Michel Itier; Günter Tremp; Jean-François Léonard; Marie-Christine Multon; Gwénaëlle Ret; Fabien Schweighoffer; Bruno Tocque; Marie-Thérèse Bluet-Pajot; Valérie Cormier; François Dautry

Mice that have been specially bred to lack a protein known as Grf-1, which is normally found only in the brain, do not grow properly after they are born and remain small all their lives. We have now identified a function of Grf-1 as an important regulator of the synthesis and release of growth hormone. Moreover, grf1, the gene encoding this protein, is unlike other imprinted genes that affect growth because it operates after, rather than before, birth.


Neurobiology of Disease | 2004

Characterisation of cytoskeletal abnormalities in mice transgenic for wild-type human tau and familial Alzheimer's disease mutants of APP and presenilin-1.

Allal Boutajangout; Michèle Authelet; Véronique Blanchard; Nathalie Touchet; Günter Tremp; Laurent Pradier; Jean Pierre Brion

To study the role of Abeta amyloid deposits in the generation of cytoskeletal lesions, we have generated a transgenic mouse line coexpressing in the same neurons a wild-type human tau isoform (0N3R), a mutant form of APP (751SL) and a mutant form of PS1 (M146L). These mice developed early cerebral extracellular deposits of Abeta, starting at 2.5 months. A somatodendritic neuronal accumulation of transgenic tau protein was observed in tau only and in tau/PS1/APP transgenic mice, including in neurons adjacent to Abeta deposits. The phosphorylation status of this somatodendritic tau was similar in the two transgenic lines. The Abeta deposits were surrounded by a neuritic reaction composed of axonal dystrophic processes, immunoreactive for many phosphotau epitopes and for the human tau transgenic protein. Ultrastructural observation showed in these dystrophic neurites a disorganisation of the microtubule and the neurofilament network but animals that were observed up to 18 months of age did not develop neurofibrillary tangles. These results indicate that overexpression of mutant PS1, mutant APP and of wild-type human tau were not sufficient per se to drive the formation of neurofibrillary tangles in a transgenic model. The Abeta deposits, however, were associated to marked changes in cytoskeletal organisation and in tau phosphorylation in adjacent dystrophic neurites.


Journal of Neuroscience Research | 2002

Neurons overexpressing mutant presenilin-1 are more sensitive to apoptosis induced by endoplasmic reticulum-Golgi stress

Faraj Terro; Christian Czech; Françoise Esclaire; Wassim Elyaman; Catherine Yardin; Marie‐Claire Baclet; Nathalie Touchet; Günter Tremp; Laurent Pradier; Jacques Hugon

Most early‐onset cases of familial Alzheimers disease (FAD) are linked to mutations in two related genes, ps1 and ps2. FAD‐linked mutant PS1 alters proteolytic processing of the amyloid precursor protein and increases vulnerability to apoptosis induced by various cell stresses. In transfected cell lines, mutations in ps1 decrease the unfolded‐protein response (UPR), which is the response to the increased amounts of unfolded proteins that accumulate in the endoplamic reticulum (ER), indicating that these mutations may increase vulnerability to ER stress by altering the UPR signalling pathway. Here we report that, in primary cultured neurons from cortices of transgenic mice, overexpression of mutated PS1 (M146L mutation) but not PS1 wild‐type (wt) enhanced spontaneous neuronal apoptosis that involved oxidative stress and caspase activation. In PS1M146L cultures, neurons displaying immunoreactivity for human PS1 were threefold more vulnerable to spontaneous apoptosis than the overall neuronal population. In addition, PS1M146L transgenic neurons were more sensitive to apoptosis induced by various stresses, including two ER‐Golgi toxins, nordihydroguaiatric acid and brefeldin A (also known to induce UPR), as well as staurosporine. In contrast, PS1 wt transgenic neurons were resistant to apoptosis induced by Golgi‐ER toxins but displayed a comparable vulnerability to staurosporine. Our study demonstrates that, as previously reported, overexpression of FAD‐linked mutant PS1 enhances neuronal vulnerability to spontaneous and induced apoptosis. In addition, we show that this vulnerability was correlated with mutant PS1 protein expression and that PS1 wt overexpression selectively prevented ER‐Golgi stress‐induced apoptosis. These data indicate that PS1 interferes with a specific apoptotic pathway that results from a dysfunction of the ER‐Golgi compartment.

Collaboration


Dive into the Günter Tremp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oliver Wirths

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge