Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gunther Antonissen is active.

Publication


Featured researches published by Gunther Antonissen.


Toxins | 2014

The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases.

Gunther Antonissen; An Martel; Frank Pasmans; Richard Ducatelle; Elin Verbrugghe; Virginie Vandenbroucke; Shaoji Li; Freddy Haesebrouck; Filip Van Immerseel; Siska Croubels

Contamination of food and feed with mycotoxins is a worldwide problem. At present, acute mycotoxicosis caused by high doses is rare in humans and animals. Ingestion of low to moderate amounts of Fusarium mycotoxins is common and generally does not result in obvious intoxication. However, these low amounts may impair intestinal health, immune function and/or pathogen fitness, resulting in altered host pathogen interactions and thus a different outcome of infection. This review summarizes the current state of knowledge about the impact of Fusarium mycotoxin exposure on human and animal host susceptibility to infectious diseases. On the one hand, exposure to deoxynivalenol and other Fusarium mycotoxins generally exacerbates infections with parasites, bacteria and viruses across a wide range of animal host species. Well-known examples include coccidiosis in poultry, salmonellosis in pigs and mice, colibacillosis in pigs, necrotic enteritis in poultry, enteric septicemia of catfish, swine respiratory disease, aspergillosis in poultry and rabbits, reovirus infection in mice and Porcine Reproductive and Respiratory Syndrome Virus infection in pigs. However, on the other hand, T-2 toxin has been shown to markedly decrease the colonization capacity of Salmonella in the pig intestine. Although the impact of the exposure of humans to Fusarium toxins on infectious diseases is less well known, extrapolation from animal models suggests possible exacerbation of, for instance, colibacillosis and salmonellosis in humans, as well.


PLOS ONE | 2014

The mycotoxin deoxynivalenol predisposes for the development of Clostridium perfringens-induced necrotic enteritis in broiler chickens.

Gunther Antonissen; Filip Van Immerseel; Frank Pasmans; Richard Ducatelle; Freddy Haesebrouck; Leen Timbermont; Marc Verlinden; Geert Janssens; Venessa Eeckhaut; Mia Eeckhout; Sarah De Saeger; Sabine Hessenberger; An Martel; Siska Croubels

Both mycotoxin contamination of feed and Clostridium perfringens-induced necrotic enteritis have an increasing global economic impact on poultry production. Especially the Fusarium mycotoxin deoxynivalenol (DON) is a common feed contaminant. This study aimed at examining the predisposing effect of DON on the development of necrotic enteritis in broiler chickens. An experimental Clostridium perfringens infection study revealed that DON, at a contamination level of 3,000 to 4,000 µg/kg feed, increased the percentage of birds with subclinical necrotic enteritis from 20±2.6% to 47±3.0% (P<0.001). DON significantly reduced the transepithelial electrical resistance in duodenal segments (P<0.001) and decreased duodenal villus height (P = 0.014) indicating intestinal barrier disruption and intestinal epithelial damage, respectively. This may lead to an increased permeability of the intestinal epithelium and decreased absorption of dietary proteins. Protein analysis of duodenal content indeed showed that DON contamination resulted in a significant increase in total protein concentration (P = 0.023). Furthermore, DON had no effect on in vitro growth, alpha toxin production and netB toxin transcription of Clostridium perfringens. In conclusion, feed contamination with DON at concentrations below the European maximum guidance level of 5,000 µg/kg feed, is a predisposing factor for the development of necrotic enteritis in broilers. These results are associated with a negative effect of DON on the intestinal barrier function and increased intestinal protein availability, which may stimulate growth and toxin production of Clostridium perfringens.


Journal of Agricultural and Food Chemistry | 2015

Mycotoxins Deoxynivalenol and Fumonisins Alter the Extrinsic Component of Intestinal Barrier in Broiler Chickens

Gunther Antonissen; Filip Van Immerseel; Frank Pasmans; Richard Ducatelle; Geert Janssens; Siegrid De Baere; Konstantinos C. Mountzouris; Shengchen Su; Eric A. Wong; Bruno De Meulenaer; Marc Verlinden; Mathias Devreese; Freddy Haesebrouck; Barbara Novak; Ilse Dohnal; An Martel; Siska Croubels

Deoxynivalenol (DON) and fumonisins (FBs) are secondary metabolites produced by Fusarium fungi that frequently contaminate broiler feed. The aim of this study was to investigate the impact of DON and/or FBs on the intestinal barrier in broiler chickens, more specifically on the mucus layer and antioxidative response to oxidative stress. One-day-old broiler chicks were divided into four groups, each consisting of eight pens of seven birds each, and were fed for 15 days either a control diet, a DON-contaminated diet (4.6 mg DON/kg feed), a FBs-contaminated diet (25.4 mg FB1 + FB2/kg feed), or a DON+FBs-contaminated diet (4.3 mg DON and 22.9 mg FB1 + FB2/kg feed). DON and FBs affected the duodenal mucus layer by suppressing intestinal mucin (MUC) 2 gene expression and altering the mucin monosaccharide composition. Both mycotoxins decreased gene expression of the intestinal zinc transporter (ZnT)-1 and regulated intracellular methionine homeostasis, which are both important for preserving the cells critical antioxidant activity. Feeding a DON- and/or FBs-contaminated diet, at concentrations close to the European Union maximum guidance levels (5 mg DON and 20 mg FB1 + FB2/kg feed) changes the intestinal mucus layer and several intestinal epithelial antioxidative mechanisms.


Toxins | 2017

Emerging Fusarium and Alternaria mycotoxins : occurrence, toxicity and toxicokinetics

Sophie Fraeyman; Siska Croubels; Mathias Devreese; Gunther Antonissen

Emerging Fusarium and Alternaria mycotoxins gain more and more interest due to their frequent contamination of food and feed, although in vivo toxicity and toxicokinetic data are limited. Whereas the Fusarium mycotoxins beauvericin, moniliformin and enniatins particularly contaminate grain and grain-based products, Alternaria mycotoxins are also detected in fruits, vegetables and wines. Although contamination levels are usually low (µg/kg range), higher contamination levels of enniatins and tenuazonic acid may occasionally occur. In vitro studies suggest genotoxic effects of enniatins A, A1 and B1, beauvericin, moniliformin, alternariol, alternariol monomethyl ether, altertoxins and stemphyltoxin-III. Furthermore, in vitro studies suggest immunomodulating effects of most emerging toxins and a reproductive health hazard of alternariol, beauvericin and enniatin B. More in vivo toxicity data on the individual and combined effects of these contaminants on reproductive and immune system in both humans and animals is needed to update the risk evaluation by the European Food Safety Authority. Taking into account new occurrence data for tenuazonic acid, the complete oral bioavailability, the low total body clearance in pigs and broiler chickens and the limited toxicity data, a health risk cannot be completely excluded. Besides, some less known Alternaria toxins, especially the genotoxic altertoxins and stemphyltoxin III, should be incorporated in risk evaluation as well.


Veterinary Research | 2015

Fumonisins affect the intestinal microbial homeostasis in broiler chickens, predisposing to necrotic enteritis

Gunther Antonissen; Siska Croubels; Frank Pasmans; Richard Ducatelle; Venessa Eeckhaut; Mathias Devreese; Marc Verlinden; Freddy Haesebrouck; Mia Eeckhout; Sarah De Saeger; Birgit Antlinger; Barbara Novak; An Martel; Filip Van Immerseel

Fumonisins (FBs) are mycotoxins produced by Fusarium fungi. This study aimed to investigate the effect of these feed contaminants on the intestinal morphology and microbiota composition, and to evaluate whether FBs predispose broilers to necrotic enteritis. One-day-old broiler chicks were divided into a group fed a control diet, and a group fed a FBs contaminated diet (18.6 mg FB1+FB2/kg feed). A significant increase in the plasma sphinganine/sphingosine ratio in the FBs-treated group (0.21 ± 0.016) compared to the control (0.14 ± 0.014) indicated disturbance of the sphingolipid biosynthesis. Furthermore, villus height and crypt depth of the ileum was significantly reduced by FBs. Denaturing gradient gel electrophoresis showed a shift in the microbiota composition in the ileum in the FBs group compared to the control. A reduced presence of low-GC containing operational taxonomic units in ileal digesta of birds exposed to FBs was demonstrated, and identified as a reduced abundance of Candidatus Savagella and Lactobaccilus spp. Quantification of total Clostridium perfringens in these ileal samples, previous to experimental infection, using cpa gene (alpha toxin) quantification by qPCR showed an increase in C. perfringens in chickens fed a FBs contaminated diet compared to control (7.5 ± 0.30 versus 6.3 ± 0.24 log10 copies/g intestinal content). After C. perfringens challenge, a higher percentage of birds developed subclinical necrotic enteritis in the group fed a FBs contaminated diet as compared to the control (44.9 ± 2.22% versus 29.8 ± 5.46%).


Journal of Agricultural and Food Chemistry | 2015

Oral Bioavailability, Hydrolysis, and Comparative Toxicokinetics of 3-Acetyldeoxynivalenol and 15-Acetyldeoxynivalenol in Broiler Chickens and Pigs.

Nathan Broekaert; Mathias Devreese; Thomas De Mil; Sophie Fraeyman; Gunther Antonissen; Siegrid De Baere; Patrick De Backer; An Vermeulen; Siska Croubels

The goal of this study was to determine the absolute oral bioavailability, (presystemic) hydrolysis and toxicokinetic characteristics of deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol in broiler chickens and pigs. Crossover animal trials were performed with intravenous and oral administration of deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol to broilers and pigs. Plasma concentrations were analyzed by using liquid chromatography-tandem mass spectrometry, and data were processed via a tailor-made compartmental toxicokinetic analysis. The results in broiler chickens showed that the absorbed fraction after oral deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol administration was 10.6, 18.2, and 42.2%, respectively. This fraction was completely hydrolyzed presystemically for 3-acetyldeoxynivalenol to deoxynivalenol and to a lesser extent (75.4%) for 15-acetyldeoxynivalenol. In pigs, the absorbed fractions were 100% for deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol, and both 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol were completely hydrolyzed presystemically. The disposition properties of 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol demonstrate their toxicological relevance and consequently the possible need to establish a tolerable daily intake.


Avian Pathology | 2016

Microbial shifts associated with necrotic enteritis

Gunther Antonissen; Venessa Eeckhaut; Karolien Van Driessche; Lonneke Onrust; Freddy Haesebrouck; Richard Ducatelle; Robert J. Moore; Filip Van Immerseel

ABSTRACT An outbreak of necrotic enteritis (NE) is a complex process requiring one or a number of predisposing factors rather than just the presence of pathogenic Clostridium perfringens. Examples are dietary influences, such as high levels of non-starch polysaccharides and fishmeal, and factors that evoke epithelial cell damage, such as Fusarium mycotoxins in feed and Eimeria infections. Recent studies have shown that different predisposing factors induce similar shifts in the intestinal microbiota composition. Butyrate-producing-strains of the Ruminococcaceae family are decreased in abundance by both fishmeal and Eimeria. Similarly, a decreased abundance of butyrate-producing-strains belonging to the Lachnospiraceae family has been induced by fishmeal. Also shifts are observed in the lactic acid-producing bacteria, such as decreased abundance of Lactobacillus johnsonii or Weissella confusa, when broilers were fed a fishmeal-based diet or a Fusarium mycotoxin contaminated diet. Finally, the abundance of Candidatus Savagella was decreased in broilers following Eimeria challenge or feeding a fumonisins contaminated diet. The nature of the microbiota shifts indicate that immune modulatory actions of the intestinal microbiota may play a critical role in the effect on the necrosis inducing activity of C. perfringens. Indeed, colonization with butyrate-producing bacteria plays a key role in counteracting inflammation in the gut and preserving intestinal integrity, while Candidatus Savagella is involved in stimulating Th17 and immunoglobulin A responses. Lactic acid bacteria stimulate colonization of lactate-utilizing and butyrate-producing Lachnospiraceae. Future research needs to clarify the role of the microbiota changes in the pathogenesis of NE.


World Mycotoxin Journal | 2015

Toxicokinetic study and oral bioavailability of deoxynivalenol in turkey poults, and comparative biotransformation between broilers and turkeys

Mathias Devreese; Gunther Antonissen; Nathan Broekaert; T. De Mil; S. De Baere; Lynn Vanhaecke; P. De Backer; Siska Croubels

The aim of present study was to reveal the toxicokinetic properties and absolute oral bioavailability of deoxynivalenol (DON) in turkey poults. Six turkey poults were administered this Fusarium mycotoxin per os and intravenously in a two-way cross-over design. Based on non-compartmental analysis, DON was absorbed rapidly (Tmax= 0.57 h) but incomplete, as the oral bioavailability was only 20.9%. DON was rapidly eliminated as well, both after oral (T1/2elimination PO=0.86 h) as well as intravenous (IV) (T1/2elimination IV = 0.62 h) administration. Furthermore, semi-quantitative analysis using high-resolution mass spectrometry revealed that DON-3α-sulphate is the major metabolite of DON in turkeys after IV as well as oral administration, with DON-3α-sulphate/DON ratios between 1.3-12.6 and 32.4-140.8 after IV and oral administration, respectively. Glucuronidation of DON to DON-3α-glucuronide is a minor pathway in turkey poults, with DON-3α-glucuronide/DON ratios between 0.009-0.065 and 0.020-0.481 after IV a...


Journal of Agricultural and Food Chemistry | 2015

Quantitative Determination of Tenuazonic Acid in Pig and Broiler Chicken Plasma by LC-MS/MS and Its Comparative Toxicokinetics

Sophie Fraeyman; Mathias Devreese; Nathan Broekaert; Thomas De Mil; Gunther Antonissen; Siegrid De Baere; Patrick De Backer; Michael Rychlik; Siska Croubels

A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantitate tenuazonic acid (TeA) in pig and broiler chicken plasma was successfully developed and validated. Linear matrix-matched calibration curves ranged between 5 and 200 ng/mL. Correlation coefficients, goodness-of-fit coefficients, and within-day and between-day precision and accuracy fell well within the acceptance criteria. The limit of quantitation was 5.0 ng/mL in both pig and broiler chicken plasma. The LC-MS/MS method was applied in a comparative toxicokinetic study in both pigs and broiler chickens. TeA was completely bioavailable after oral administration in both animal species. However, absorption was deemed to be slower in broiler chickens (mean tmax 0.32 h in pigs vs 2.60 h in chickens). TeA was more slowly eliminated in broiler chickens (mean t1/2el 0.55 h in pigs vs 2.45 h in chickens after oral administration), mainly due to the significantly lower total body clearance (mean Cl 446.1 mL/h/kg in pigs vs 59.2 mL/h/kg in chickens after oral administration). Tissue residue studies and further research to elucidate the biotransformation and excretion processes of TeA in pigs, broiler chickens, and other animal species are imperative.


Journal of Agricultural and Food Chemistry | 2016

Comparative Oral Bioavailability, Toxicokinetics, and Biotransformation of Enniatin B1 and Enniatin B in Broiler Chickens

Sophie Fraeyman; Mathias Devreese; Gunther Antonissen; Siegrid De Baere; Michael Rychlik; Siska Croubels

A toxicokinetic study of the Fusarium mycotoxins enniatin B1 (ENN B1) and enniatin B (ENN B) was performed in broiler chickens. Each animal received ENN B1 or B orally via an intracrop bolus and intravenously at a dose of 0.2 mg/kg body weight. Both enniatins were poorly absorbed after oral administration, with absolute oral bioavailabilities of 0.05 and 0.11 for ENNs B1 and B, respectively. Both enniatins were readily distributed to the tissues, with mean volumes of distribution of 25.09 and 33.91 L/kg for ENNs B1 and B, respectively. The mean total body clearance was rather high, namely, 6.63 and 7.10 L/h/kg for ENNs B1 and B, respectively. Finally, an UHPLC-HRMS targeted approach was used to investigate the phase I and II biotransformations of both mycotoxins. Oxygenation was the major phase I biotransformation pathway for both ENNs B1 and B. Neither glucuronide nor sulfate phase II metabolites were detected.

Collaboration


Dive into the Gunther Antonissen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge