Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gunther Marsche is active.

Publication


Featured researches published by Gunther Marsche.


Journal of Clinical Investigation | 2005

The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages

Liliana Schaefer; Andrea Babelova; Eva Kiss; Heinz Hausser; Martina Baliova; Miroslava Krzyzankova; Gunther Marsche; Marian F. Young; Daniel Mihalik; Martin Götte; Ernst Malle; Roland M. Schaefer; Hermann Josef Gröne

Biglycan, a small leucine-rich proteoglycan, is a ubiquitous ECM component; however, its biological role has not been elucidated in detail. Here we show that biglycan acts in macrophages as an endogenous ligand of TLR4 and TLR2, which mediate innate immunity, leading to rapid activation of p38, ERK, and NF-kappaB and thereby stimulating the expression of TNF-alpha and macrophage inflammatory protein-2 (MIP-2). In agreement, the stimulatory effects of biglycan are significantly reduced in TLR4-mutant (TLR4-M), TLR2-/-, and myeloid differentiation factor 88-/- (MyD88-/-) macrophages and completely abolished in TLR2-/-/TLR4-M macrophages. Biglycan-null mice have a considerable survival benefit in LPS- or zymosan-induced sepsis due to lower levels of circulating TNF-alpha and reduced infiltration of mononuclear cells in the lung, which cause less end-organ damage. Importantly, when stimulated by LPS-induced proinflammatory factors, macrophages themselves are able to synthesize biglycan. Thus, biglycan, upon release from the ECM or from macrophages, can boost inflammation by signaling through TLR4 and TLR2, thereby enhancing the synthesis of TNF-alpha and MIP-2. Our results provide evidence for what is, to our knowledge, a novel role of the matrix component biglycan as a signaling molecule and a crucial proinflammatory factor. These findings are potentially relevant for the development of new strategies in the treatment of sepsis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2000

Role of Serum Amyloid A During Metabolism of Acute-Phase HDL by Macrophages

Andreas Artl; Gunther Marsche; Sophie Lestavel; Wolfgang Sattler; Ernst Malle

The serum amyloid A (SAA) family of proteins is encoded by multiple genes that display allelic variation and a high degree of homology in mammals. Triggered by inflammation after stimulation of hepatocytes by lymphokine-mediated processes, the concentrations of SAA may increase during the acute-phase reaction to levels 1000-fold greater than those found in the noninflammatory state. In addition to its role as an acute-phase reactant, SAA (104 amino acids, 12 kDa) is considered to be the precursor protein of secondary reactive amyloidosis, in which the N-terminal portion is incorporated into the bulk of amyloid fibrils. However, the association with lipoproteins of the high-density range and subsequent modulation of the metabolic properties of its physiological carrier appear to be the principal role of SAA. Because SAA may displace apolipoprotein A-I, the major protein component of native high density lipoprotein (HDL), during the acute-phase reaction, the present study was aimed at (1) investigating binding properties of native and acute-phase (SAA-enriched) HDL by J774 macrophages, (2) elucidating whether the presence of SAA on HDL particles affects selective uptake of HDL-associated cholesteryl esters, and (3) comparing cellular cholesterol efflux mediated by native and acute-phase HDL. Both the total and the specific binding at 4 degrees C of rabbit acute-phase HDL were approximately 2-fold higher than for native HDL. Nonlinear regression analysis revealed K(d) values of 7.0 x 10(-7) mol/L (native HDL) and 3.1 x 10(-7) mol/L (acute-phase HDL), respectively. The corresponding B(max) values were 203 ng of total lipoprotein per milligram of cell protein (native HDL) and 250 ng of total lipoprotein per milligram of cell protein (acute-phase HDL). At 37 degrees C, holoparticle turnover was slightly enhanced for acute-phase HDL, a fact reflected by 2-fold higher degradation rates. In contrast, the presence of SAA on HDL specifically increased (1. 7-fold) the selective uptake of HDL cholesteryl esters from acute-phase HDL by J774 macrophages, a widely used in vitro model to study foam cell formation and cholesterol efflux properties. Although ligand blotting experiments with solubilized J774 membrane proteins failed to identify the scavenger receptor-BI as a binding protein for both native and acute-phase HDL, 2 binding proteins with molecular masses of 100 and 72 kDa, the latter comigrating with CD55 (also termed decay-accelerating factor), were identified. During cholesterol efflux studies, it became apparent that the ability of acute-phase HDL with regard to cellular cholesterol removal was considerably lower than that for native HDL. This was reflected by a 1.7-fold increase in tau/2 values (22 versus 36 hours; native versus acute-phase HDL). Our observations of increased HDL cholesteryl ester uptake and reduced cellular cholesterol efflux (acute-phase versus native HDL) suggest that displacement of apolipoprotein A-I by SAA results in considerable altered metabolic properties of its main physiological carrier. These changes in the apolipoprotein moieties appear (at least in the in vitro system tested) to transform an originally antiatherogenic into a proatherogenic lipoprotein particle.


Circulation Research | 2009

Human Endothelial Cells of the Placental Barrier Efficiently Deliver Cholesterol to the Fetal Circulation via ABCA1 and ABCG1

Jasminka Stefulj; Ute Panzenboeck; Tatjana Becker; Birgit Hirschmugl; Cornelia Schweinzer; Ingrid Lang; Gunther Marsche; Anton Sadjak; U Lang; Gernot Desoye; Christian Wadsack

Although maternal–fetal cholesterol transfer may serve to compensate for insufficient fetal cholesterol biosynthesis under pathological conditions, it may have detrimental consequences under conditions of maternal hypercholesterolemia leading to preatherosclerotic lesion development in fetal aortas. Maternal cholesterol may enter fetal circulation by traversing syncytiotrophoblast and endothelial layers of the placenta. We hypothesized that endothelial cells (ECs) of the fetoplacental vasculature display a high and tightly regulated capacity for cholesterol release. Using ECs isolated from human term placenta (HPECs), we investigated cholesterol release capacity and examined transporters involved in cholesterol efflux pathways controlled by liver-X-receptors (LXRs). HPECs demonstrated 2.5-fold higher cholesterol release to lipid-free apolipoprotein (apo)A-I than human umbilical vein ECs (HUVECs), whereas both cell types showed similar cholesterol efflux to high-density lipoproteins (HDLs). Interestingly, treatment of HPECs with LXR activators increased cholesterol efflux to both types of acceptors, whereas no such response could be observed for HUVECs. In line with enhanced cholesterol efflux, LXR activation in HPECs increased expression of ATP-binding cassette transporters ABCA1 and ABCG1, while not altering expression of ABCG4 and scavenger receptor class B type I (SR-BI). Inhibition of ABCA1 or silencing of ABCG1 decreased cholesterol efflux to apoA-I (−70%) and HDL3 (−57%), respectively. Immunohistochemistry localized both transporters predominantly to the apical membranes of placental ECs in situ. Thus, ECs of human term placenta exhibit unique, efficient and LXR-regulated cholesterol efflux mechanisms. We propose a sequential pathway mediated by ABCA1 and ABCG1, respectively, by which HPECs participate in forming mature HDL in the fetal blood.


Journal of Biological Chemistry | 2002

Hypochlorite-modified High Density Lipoprotein, a High Affinity Ligand to Scavenger Receptor Class B, Type I, Impairs High Density Lipoprotein-dependent Selective Lipid Uptake and Reverse Cholesterol Transport

Gunther Marsche; Astrid Hammer; Olga Oskolkova; Karen F. Kozarsky; Wolfgang Sattler; Ernst Malle

Hypochlorous acid/hypochlorite (HOCl/OCl−), a potent oxidant generated in vivo by the myeloperoxidase-H2O2-chloride system of activated phagocytes, alters the physiological properties of high density lipoprotein (HDL) by generating a proatherogenic lipoprotein particle. On endothelial cells lectin-like oxidized low density lipoprotein receptor 1 (LOX-1) and scavenger receptor class B, type I (SR-BI), act in concert by mediating the holoparticle of and selective cholesteryl ester uptake from HOCl-HDL. We therefore investigated the ligand specificity of HOCl-HDL to SR-BI-overexpressing Chinese hamster ovary cells. Binding of HOCl-HDL was saturable, and the degree of HOCl modification was the determining factor for increased binding affinity to SR-BI. Competition experiments further confirmed that HOCl-HDL binds with increased affinity to the same or overlapping domain(s) of SR-BI as does native HDL. Furthermore, SR-BI-mediated selective HDL-cholesteryl ester association as well as time- and concentration-dependent cholesterol efflux from SR-BI overexpressing Chinese hamster ovary cells were, depending on the degree of HOCl modification of HDL, markedly impaired. The most significant findings of this study were that the presence of very low concentrations of HOCl-HDL severely impaired SR-BI-mediated bidirectional cholesterol flux mediated by native HDL. The colocalization of immunoreactive HOCl-modified epitopes with apolipoprotein A-I along with deposits of lipids in serial sections of human atheroma shown here indicates that the myeloperoxidase-H2O2-halide system contributes to oxidative damage of HDL in vivo.


Journal of Biological Chemistry | 2001

Hypochlorite-modified Low Density Lipoprotein Inhibits Nitric Oxide Synthesis in Endothelial Cells via an Intracellular Dislocalization of Endothelial Nitric-oxide Synthase

Alexander Nuszkowski; Rolf Gräbner; Gunther Marsche; Anett Unbehaun; Ernst Malle; Regine Heller

Hypochlorous acid/hypochlorite, generated by the myeloperoxidase/H2O2/halide system of activated phagocytes, has been shown to oxidize/modify low density lipoprotein (LDL) in vitro and may be involved in the formation of atherogenic lipoproteins in vivo. Accordingly, hypochlorite-modified (lipo)proteins have been detected in human atherosclerotic lesions where they colocalize with macrophages and endothelial cells. The present study investigates the influence of hypochlorite-modified LDL on endothelial synthesis of nitric oxide (NO) measured as formation of citrulline (coproduct of NO) and cGMP (product of the NO-activated soluble guanylate cyclase) upon cell stimulation with thrombin or ionomycin. Pretreatment of human umbilical vein endothelial cells with hypochlorite-modified LDL led to a time- and concentration-dependent inhibition of agonist-induced citrulline and cGMP synthesis compared with preincubation of cells with native LDL. This inhibition was neither due to a decreased expression of endothelial NO synthase (eNOS) nor to a deficiency of its cofactor tetrahydrobiopterin. Likewise, the uptake of l-arginine, the substrate of eNOS, into the cells was not affected. Hypochlorite-modified LDL caused remarkable changes of intracellular eNOS distribution including translocation from the plasma membrane and disintegration of the Golgi location without altering myristoylation or palmitoylation of the enzyme. In contrast, cyclodextrin known to deplete plasma membrane of cholesterol and to disrupt caveolae induced only a disappearance of eNOS from the plasma membrane that was not associated with decreased agonist-induced citrulline and cGMP formation. The present findings suggest that mislocalization of NOS accounts for the reduced NO formation in human umbilical vein endothelial cells treated with hypochlorite-modified LDL and point to an important role of Golgi-located NOS in these processes. We conclude that inhibition of NO synthesis by hypochlorite-modified LDL may be an important mechanism in the development of endothelial dysfunction and early pathogenesis of atherosclerosis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2004

2-Chlorohexadecanal Derived From Hypochlorite-Modified High-Density Lipoprotein–Associated Plasmalogen Is a Natural Inhibitor of Endothelial Nitric Oxide Biosynthesis

Gunther Marsche; Regine Heller; Günter Fauler; Alenka Kovacevic; Alexander Nuszkowski; Wolfgang F. Graier; Wolfgang Sattler; Ernst Malle

Objective—Myeloperoxidase, a heme enzyme that is present and active in human atherosclerotic lesions, provides a source for the generation of proinflammatory chlorinated reactants contributing to endothelial dysfunction. Modification of high-density lipoprotein (HDL) by hypochlorous acid/hypochlorite (HOCl/Oce−)—generated in vivo by the myeloperoxidase-hydrogen peroxide-chloride system of activated phagocytes—forms a proatherogenic lipoprotein particle that binds to and is internalized by endothelial cells. Methods and Results—Here we show that HDL, modified with physiologically relevant HOCl concentrations, attenuates the expression and activity of vasculoprotective endothelial nitric oxide synthase. HOCl-HDL promotes dislocalization of endothelial nitric oxide synthase from the plasma membrane and perinuclear location of human umbilical venous endothelial cells. We could identify 2-chlorohexadecanal as the active component mediating this inhibitory activity. This chlorinated fatty aldehyde is formed during HOCl-mediated oxidative cleavage of HDL-associated plasmalogen. Conclusion—2-Chlorohexadecanal, produced by the myeloperoxidase-hydrogen peroxide-chloride system of activated phagocytes may act as a mediator of vascular injury associated with ischemia-reperfusion injury, glomerulosclerosis, and atherosclerosis.


Antioxidants & Redox Signaling | 2011

Protein Carbamylation Renders High-Density Lipoprotein Dysfunctional

Michael Holzer; Martin Gauster; Thomas Pfeifer; Christian Wadsack; Guenter Fauler; Philipp Stiegler; Harald Koefeler; Eckhard Beubler; Rufina Schuligoi; Akos Heinemann; Gunther Marsche

Carbamylation of proteins through reactive cyanate has been demonstrated to predict an increased cardiovascular risk. Cyanate is formed in vivo by breakdown of urea and at sites of inflammation by the phagocyte protein myeloperoxidase. Because myeloperoxidase (MPO) associates with high-density lipoprotein (HDL) in human atherosclerotic intima, we examined in the present study whether cyanate specifically targets HDL. Mass spectrometry analysis revealed that protein carbamylation is a major posttranslational modification of HDL. The carbamyllysine content of lesion-derived HDL was more than 20-fold higher in comparison with 3-chlorotyrosine levels, a specific oxidation product of MPO. Notably, the carbamyllysine content of lesion-derived HDL was five- to eightfold higher when compared with lesion-derived low-density lipoprotein (LDL) or total lesion protein and increased with lesion severity. The carbamyllysine content of HDL, but not of LDL, correlated with levels of 3-chlorotyrosine, suggesting that MPO mediated carbamylation in the vessel wall. Remarkably, one carbamyllysine residue per HDL-associated apolipoprotein A-I was sufficient to induce cholesterol accumulation and lipid-droplet formation in macrophages through a pathway requiring the HDL-receptor scavenger receptor class B, type I. The present results raise the possibility that HDL carbamylation contributes to foam cell formation in atherosclerotic lesions.


Journal of Lipid Research | 2012

Psoriasis alters HDL composition and cholesterol efflux capacity

Michael Holzer; Peter Wolf; Sanja Curcic; Ruth Birner-Gruenberger; Wolfgang Weger; Martin Inzinger; Dalia El-Gamal; Christian Wadsack; Akos Heinemann; Gunther Marsche

Psoriasis, a chronic inflammatory skin disease, has been linked to increased myocardial infarction and stroke. Functional impairment of HDL may contribute to the excess cardiovascular mortality of psoriatic patients. However, data available regarding the impact of psoriasis on HDL composition and function are limited. HDL from psoriasis patients and healthy controls was isolated by ultracentrifugation and shotgun proteomics, and biochemical methods were used to monitor changed HDL composition. We observed a significant reduction in apoA-I levels of HDL from psoriatic patients, whereas levels of apoA-II and proteins involved in acute-phase response, immune response, and endopeptidase/protease inhibition were increased. Psoriatic HDL contained reduced phospholipid and cholesterol. With regard to function, these compositional alterations impaired the ability of psoriatic HDL to promote cholesterol efflux from macrophages. Importantly, HDL-cholesterol efflux capability negatively correlated with psoriasis area and severity index. We observed that control HDL, as well as psoriatic HDL, inhibited dihydrorhodamine (DHR) oxidation to a similar extent, suggesting that the anti-oxidative activity of psoriatic HDL is not significantly altered. Our observations suggest that the compositional alterations observed in psoriatic HDL reflect a shift to a pro-inflammatory profile that impairs cholesterol efflux capacity of HDL and may provide a link between psoriasis and cardiovascular disease.


Pharmacology & Therapeutics | 2013

E-type prostanoid receptor 4 (EP4) in disease and therapy

Viktoria Konya; Gunther Marsche; Rufina Schuligoi; Akos Heinemann

The large variety of biological functions governed by prostaglandin (PG) E2 is mediated by signaling through four distinct E-type prostanoid (EP) receptors. The availability of mouse strains with genetic ablation of each EP receptor subtype and the development of selective EP agonists and antagonists have tremendously advanced our understanding of PGE2 as a physiologically and clinically relevant mediator. Moreover, studies using disease models revealed numerous conditions in which distinct EP receptors might be exploited therapeutically. In this context, the EP4 receptor is currently emerging as most versatile and promising among PGE2 receptors. Anti-inflammatory, anti-thrombotic and vasoprotective effects have been proposed for the EP4 receptor, along with its recently described unfavorable tumor-promoting and pro-angiogenic roles. A possible explanation for the diverse biological functions of EP4 might be the multiple signaling pathways switched on upon EP4 activation. The present review attempts to summarize the EP4 receptor-triggered signaling modules and the possible therapeutic applications of EP4-selective agonists and antagonists.


Pharmacology & Therapeutics | 2013

Inflammation alters HDL composition and function: implications for HDL-raising therapies.

Gunther Marsche; Marcus D. Säemann; Akos Heinemann; Michael Holzer

There is clear epidemiological evidence that plasma levels of high-density lipoprotein (HDL)-cholesterol are inverse and independent predictors of cardiovascular disease risk, fueling interest in novel therapies capable of raising HDL-cholesterol. However, the relevance of HDL-cholesterol as a surrogate marker for HDL-related risk has been questioned. Latest failures of HDL-cholesterol raising drugs and a recent study that showed no causal association between risk for myocardial infarction and genetically raised plasma HDL-cholesterol indicate that steady-state HDL-cholesterol concentrations may provide limited information regarding the potential antiatherogenic functions of HDL. There is accumulating evidence that HDL composition determines its functional properties, rather than the levels of circulating HDL-cholesterol. Therefore, assessing HDL composition and function might provide more relevant information than steady-state HDL-cholesterol levels. Recent mass spectrometric analyses revealed that protein composition of HDL is complex, expanding our understanding of the functions and structures of lipoproteins. Significant alterations were identified in the composition and function of circulating HDL of patients with high cardiovascular risk, as well as in HDL isolated from atherosclerotic tissue. These novel insights may help to develop therapies that target the functionality of HDL and further enable the identification of patients at increased cardiovascular risk.

Collaboration


Dive into the Gunther Marsche's collaboration.

Top Co-Authors

Avatar

Akos Heinemann

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Michael Holzer

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Rufina Schuligoi

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Rudolf Schicho

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Saša Frank

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Viktoria Konya

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Christian Wadsack

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolfgang Sattler

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Sanja Curcic

Medical University of Graz

View shared research outputs
Researchain Logo
Decentralizing Knowledge