Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Günther Pass is active.

Publication


Featured researches published by Günther Pass.


Molecular Biology and Evolution | 2010

A Phylogenomic Approach to Resolve the Arthropod Tree of Life

Karen Meusemann; Björn M. von Reumont; Sabrina Simon; Falko Roeding; Sascha Strauss; Patrick Kück; Ingo Ebersberger; Manfred Walzl; Günther Pass; Sebastian Breuers; Viktor Achter; Arndt von Haeseler; Thorsten Burmester; Heike Hadrys; J. Wolfgang Wägele; Bernhard Misof

Arthropods were the first animals to conquer land and air. They encompass more than three quarters of all described living species. This extraordinary evolutionary success is based on an astoundingly wide array of highly adaptive body organizations. A lack of robustly resolved phylogenetic relationships, however, currently impedes the reliable reconstruction of the underlying evolutionary processes. Here, we show that phylogenomic data can substantially advance our understanding of arthropod evolution and resolve several conflicts among existing hypotheses. We assembled a data set of 233 taxa and 775 genes from which an optimally informative data set of 117 taxa and 129 genes was finally selected using new heuristics and compared with the unreduced data set. We included novel expressed sequence tag (EST) data for 11 species and all published phylogenomic data augmented by recently published EST data on taxonomically important arthropod taxa. This thorough sampling reduces the chance of obtaining spurious results due to stochastic effects of undersampling taxa and genes. Orthology prediction of genes, alignment masking tools, and selection of most informative genes due to a balanced taxa-gene ratio using new heuristics were established. Our optimized data set robustly resolves major arthropod relationships. We received strong support for a sister group relationship of onychophorans and euarthropods and strong support for a close association of tardigrades and cycloneuralia. Within pancrustaceans, our analyses yielded paraphyletic crustaceans and monophyletic hexapods and robustly resolved monophyletic endopterygote insects. However, our analyses also showed for few deep splits that were recently thought to be resolved, for example, the position of myriapods, a remarkable sensitivity to methods of analyses.


BMC Evolutionary Biology | 2009

Can comprehensive background knowledge be incorporated into substitution models to improve phylogenetic analyses? A case study on major arthropod relationships

Björn M. von Reumont; Karen Meusemann; Nikolaus U. Szucsich; Emiliano Dell'Ampio; Vivek Gowri-Shankar; Daniela Bartel; Sabrina Simon; Harald Letsch; Roman R. Stocsits; Yun-xia Luan; Johann Wolfgang Wägele; Günther Pass; Heike Hadrys; Bernhard Misof

BackgroundWhenever different data sets arrive at conflicting phylogenetic hypotheses, only testable causal explanations of sources of errors in at least one of the data sets allow us to critically choose among the conflicting hypotheses of relationships. The large (28S) and small (18S) subunit rRNAs are among the most popular markers for studies of deep phylogenies. However, some nodes supported by this data are suspected of being artifacts caused by peculiarities of the evolution of these molecules. Arthropod phylogeny is an especially controversial subject dotted with conflicting hypotheses which are dependent on data set and method of reconstruction. We assume that phylogenetic analyses based on these genes can be improved further i) by enlarging the taxon sample and ii) employing more realistic models of sequence evolution incorporating non-stationary substitution processes and iii) considering covariation and pairing of sites in rRNA-genes.ResultsWe analyzed a large set of arthropod sequences, applied new tools for quality control of data prior to tree reconstruction, and increased the biological realism of substitution models. Although the split-decomposition network indicated a high noise content in the data set, our measures were able to both improve the analyses and give causal explanations for some incongruities mentioned from analyses of rRNA sequences. However, misleading effects did not completely disappear.ConclusionAnalyses of data sets that result in ambiguous phylogenetic hypotheses demand for methods, which do not only filter stochastic noise, but likewise allow to differentiate phylogenetic signal from systematic biases. Such methods can only rely on our findings regarding the evolution of the analyzed data. Analyses on independent data sets then are crucial to test the plausibility of the results. Our approach can easily be extended to genomic data, as well, whereby layers of quality assessment are set up applicable to phylogenetic reconstructions in general.


Molecular Biology and Evolution | 2014

Decisive Data Sets in Phylogenomics: Lessons from Studies on the Phylogenetic Relationships of Primarily Wingless Insects

Emiliano Dell’Ampio; Karen Meusemann; Nikolaus U. Szucsich; Ralph S. Peters; Benjamin Meyer; Janus Borner; Malte Petersen; Andre J. Aberer; Alexandros Stamatakis; Manfred Walzl; Bui Quang Minh; Arndt von Haeseler; Ingo Ebersberger; Günther Pass; Bernhard Misof

Phylogenetic relationships of the primarily wingless insects are still considered unresolved. Even the most comprehensive phylogenomic studies that addressed this question did not yield congruent results. To get a grip on these problems, we here analyzed the sources of incongruence in these phylogenomic studies by using an extended transcriptome data set. Our analyses showed that unevenly distributed missing data can be severely misleading by inflating node support despite the absence of phylogenetic signal. In consequence, only decisive data sets should be used which exclusively comprise data blocks containing all taxa whose relationships are addressed. Additionally, we used Four-cluster Likelihood Mapping (FcLM) to measure the degree of congruence among genes of a data set, as a measure of support alternative to bootstrap. FcLM showed incongruent signal among genes, which in our case is correlated neither with functional class assignment of these genes nor with model misspecification due to unpartitioned analyses. The herein analyzed data set is the currently largest data set covering primarily wingless insects, but failed to elucidate their interordinal phylogenetic relationships. Although this is unsatisfying from a phylogenetic perspective, we try to show that the analyses of structure and signal within phylogenomic data can protect us from biased phylogenetic inferences due to analytical artifacts.


Developmental Biology | 2008

The Drosophila wing hearts originate from pericardial cells and are essential for wing maturation

Markus Tögel; Günther Pass; Achim Paululat

In addition to the heart proper, insects possess wing hearts in the thorax to ensure regular hemolymph flow through the narrow wings. In Drosophila, the wing hearts consist of two bilateral muscular pumps of unknown origin. Here, we present the first developmental study on these organs and report that the wing hearts originate from eight embryonic progenitor cells arising in two pairs in parasegments 4 and 5. These progenitors represent a so far undescribed subset of the Even-skipped positive pericardial cells (EPC) and are characterized by the early loss of tinman expression in contrast to the continuously Tinman positive classical EPCs. Ectopic expression of Tinman in the wing heart progenitors omits organ formation, indicating a crucial role for Tinman during progenitor specification. The subsequent postembryonic development is a highly dynamic process, which includes proliferation and two relocation events. Adults lacking wing hearts display a severe wing phenotype and are unable to fly. The phenotype is caused by omitted clearance of the epidermal cells from the wings during maturation, which inhibits the formation of a flexible wing blade. This indicates that wing hearts are required for proper wing morphogenesis and functionality.


Zoomorphology | 1991

Antennal circulatory organs in Onychophora, Myriapoda and Hexapoda: Functional morphology and evolutionary implications

Günther Pass

SummaryA comparative investigation of the antennal circulatory organs in representatives of the Onychophora, all subtaxa of the Myriapoda and numerous taxa of the Hexapoda (comprising a total of 54 species) revealed an unexpected diversity in structure and function.In the Onychophora, antennal vessels exist which are connected to the enlarged anterior end of the aorta dorsal to the brain.In the Chilopoda, Diplopoda and Symphyla, antennal vessels exist which originate from the dorsal vessel caudal to the brain. They extend under the optic lobes, lateral to the circumoesophageal connectives, into the antennae.In the Hexapoda, the investigations include representatives of all higher taxa, apart from the Paraneoptera and the Holometabola. Generally, antennal vessels exist. In the Diplura, they originate from the anterior end of the aorta in front of the brain. In all other insects the antennal vessels are separate from the dorsal vessel. Their proximal ends form ampullary enlargements which are attached to the frontal cuticle near the antenna bases. They communicate via valved ostia with the haemolymph sinus in front of the brain. In the Archaeognatha, Zygentoma, Odonata, certain Plecoptera and the Notoptera, no muscles are connected to these organs. In all other groups the ampullae are pulsatile as a result of associated muscles (“antennal hearts”). These muscles diverge widely in their attachments and act either as compressors (Dermaptera) or dilators of the ampullae (Embioptera, Blattopteroidea, Orthopteroidea, and some Plecoptera).In the Collembola and Ephemeroptera, special antennal circulatory organs are lacking. In some forms the anatomical arrangement of the inner organs, in conjunction with short diaphragms at the antenna bases, apparently leads to a channelling of haemolymph flow. This condition may be explained by the very short antennae of these insects and is considered as a convergent and apomorphic state in these taxa.The antennal vessels are supposed to be homologous within the Tracheata and to represent the lateral arteries of the antenna segment. An origin from the dorsal vessel is considered an ancestral state, which was lost in the stem lineage of the Ectognatha. Specific space constraints within the cephalic capsule are discussed as the possible reason for this loss. The evolution of pulsatile antennal circulatory organs in the Neoptera is the result of the association of muscles with the proximal ampullary ends of the antennal vessels. The attachments and innervation of these muscles indicate a derivation from precerebral pharyngeal dilators.


Journal of Insect Physiology | 1985

Electrophysiological investigation of the antennal heart of Periplaneta americana and its reactions to proctolin

Wieland Hertel; Günther Pass; Heinz Penzlin

Abstract Some physiological parameters of the antennal heart, an accessory circulatory organ in the head of Periplaneta americana and the effect of the neuropeptide proctolin on it were investigated. The beat frequency of the antennal heart in vivo or semiisolated is about 2–3 times slower than that of the dorsal vessel and not coordinated with the latter. The extracellular ECG of the antennal heart has a simple biphasic shape with a total duration of 588.7 ± 38.2 ms. Intracellularly recorded parameters showed characteristics typical of myogenic rhythmicity: a slow depolarization with a rate of rise of 7.5 ± 0.7 mV/s, followed by an action potential of 54.9 ± 1.2 mV with a relatively long duration of 201.6 ± 10.8 ms, absence of overshoots and resistance to TTX. Proctolin produced a marked enhancement of the frequency of beat of the antennal heart up to about 400% with a high sensitivity (threshold concentrations: 5·10−9M). The dose-response curve shows a linear relationship between the logarithm of the concentration and the percentage increase in beat frequency. The electrical event most influenced by proctolin was the slow pacemaker depolarization, whose rate of rise was enhanced up to 240%. The action potential remained unchanged; the depolarization of the resting potential was very small and the input resistance did not change. The antennal heart responds to neurohormone D, another neuropeptide in insects, in a similar way as it does to proctolin. The mode of action of proctolin on the antennal heart is discussed in comparison to that found in other systems.


Journal of Morphology | 1985

Gross and fine structure of the antennal circulatory organ in cockroaches (Blattodea, Insecta)

Günther Pass

The antennal circulatory organ of Periplaneta americana and Blaberus craniifer was investigated by light and electron microscopy. This organ consists of two pulsatile ampullae located near the antennal base which are interconnected by a large transverse muscle and associated blood vessels which run into the antennae. Diastole is caused simultaneously in both ampullae by the transverse muscle. Systole is produced passively by the elasticity of the wall of the ampullae and minute accessory tendons. Both elastic structures contain fine unbanded extracellular filaments.


Cell and Tissue Research | 1988

Morphology of neurones associated with the antennal heart of Periplaneta americana (Blattodea, Insecta)

Günther Pass; Hans Agricola; Heiner Birkenbeil; Heinz Penzlin

SummaryInnervation of the antennal heart, an independent accessory circulatory motor in the head of insects, was investigated in the cockroach Periplaneta americana by use of axonal cobalt filling and transmission electron microscopy. The muscles associated with this organ are innervated by neurones located in a part of the suboesophageal ganglion, generally considered to be formed by the mandibular neuromere. Dorsal unpaired median (DUM) and paired contralateral neurones were stained. The axons of all these neurones run along the circumoesophageal connectives and through the paired nervus corporis cardiaci III into the corpora cardiaca. They pass through these organs forming fine arborizations there and exit anteriorly as a small pair of nerves which terminate at the antennal heart-dilator muscles. Numerous branches of these nerves extend beyond the lateral borders of the large transverse dilator muscle and terminate in the ampullar walls of the antennal heart. These neurosecretory fibres form neurohaemal areas which obviously release their products into the haemolymph, which is pumped into the antennae. The possible functions of the neurones associated with the antennal heart are discussed with respect to both, their role as a modulatory input for the circulatory motor and as a neurohormonal release site.


Arthropod Structure & Development | 2010

Structure and sensory physiology of the leg scolopidial organs in Mantophasmatodea and their role in vibrational communication.

Monika J. B. Eberhard; D. Lang; Brian D. Metscher; Günther Pass; Mike D. Picker; Harald Wolf

Individuals of the insect order Mantophasmatodea use species-specific substrate vibration signals for mate recognition and location. In insects, substrate vibration is detected by mechanoreceptors in the legs, the scolopidial organs. In this study we give a first detailed overview of the structure, sensory sensitivity, and function of the leg scolopidial organs in two species of Mantophasmatodea and discuss their significance for vibrational communication. The structure and number of the organs are documented using light microscopy, SEM, and x-ray microtomography. Five scolopidial organs were found in each leg of male and female Mantophasmatodea: a femoral chordotonal organ, subgenual organ, tibial distal organ, tibio-tarsal scolopidial organ, and tarso-pretarsal scolopidial organ. The femoral chordotonal organ, consisting of two separate scoloparia, corresponds anatomically to the organ of a stonefly (Nemoura variegata) while the subgenual organ complex resembles the very sensitive organs of the cockroach Periplatena americana (Blattodea). Extracellular recordings from the leg nerve revealed that the leg scolopidial organs of Mantophasmatodea are very sensitive vibration receptors, especially for low-frequency vibrations. The dominant frequencies of the vibratory communication signals of Mantophasmatodea, acquired from an individual drumming on eight different substrates, fall in the frequency range where the scolopidial organs are most sensitive.


Zoologica Scripta | 2009

Testing for misleading effects in the phylogenetic reconstruction of ancient lineages of hexapods: influence of character dependence and character choice in analyses of 28S rRNA sequences

Emiliano Dell’Ampio; Nikolaus U. Szucsich; Antonio Carapelli; Francesco Frati; Gerhard Steiner; Arno Steinacher; Günther Pass

The present analyses employ the almost complete sequence of the 28S rRNA gene to investigate phylogenetic relationships among Pancrustacea, placing special emphasis on the position of basal hexapod lineages. This study utilizes a greater number of characters and taxa of Protura, Collembola and Diplura than previous analyses to focus on conflicts in the reconstruction of the early steps in hexapod evolution. Phylogenetic trees are mainly based on Bayesian approaches, but likewise include analyses with Maximum Likelihood and Maximum Parsimony. Different analyses, including the application of a mixed DNA/RNA substitution model, were performed to narrow possible misleading effects of non‐stationarity of nucleotide frequencies, saturation and character independence down to a minimum. This is the first time that a mixed DNA/RNA model is applied to analyse 28S rRNA sequences of basal hexapods. All methods yielded strong support for the monophyly of Collembola, Diplura, Dicondylia and Insecta s.str., as well as for a cluster composed of Diplura and Protura (‘Nonoculata‐hypothesis’). However, the last cluster may be an artifact caused by a shared GC bias of the 28S sequences between these orders, in combination with a long branch effect. The instability of the position of the ‘Nonoculata’ within Pancrustacea further bears out the misleading effect of non‐stationarity of nucleotide frequencies. Protura and Diplura either form the sister‐group to Collembola (Entognatha) or cluster with branchiopod crustaceans. Overall, the phylogenetic signal of the complete sequences of the 28S rRNA gene favours monophyly of Hexapoda over paraphyly. However, further corroboration from independent data is needed to rule out the competing hypothesis of mutually paraphyletic Crustacea and Hexapoda.

Collaboration


Dive into the Günther Pass's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Tögel

University of Osnabrück

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Achim Paululat

University of Osnabrück

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heike Hadrys

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Sabrina Simon

American Museum of Natural History

View shared research outputs
Researchain Logo
Decentralizing Knowledge