Guntram Christiansen
University of Innsbruck
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guntram Christiansen.
Journal of Bacteriology | 2003
Guntram Christiansen; Jutta Fastner; Marcel Erhard; Thomas Börner; Elke Dittmann
Microcystins represent an extraordinarily large family of cyclic heptapeptide toxins that are nonribosomally synthesized by various cyanobacteria. Microcystins specifically inhibit the eukaryotic protein phosphatases 1 and 2A. Their outstanding variability makes them particularly useful for studies on the evolution of structure-function relationships in peptide synthetases and their genes. Analyses of microcystin synthetase genes provide valuable clues for the potential and limits of combinatorial biosynthesis. We have sequenced and analyzed 55.6 kb of the potential microcystin synthetase gene (mcy) cluster from the filamentous cyanobacterium Planktothrix agardhii CYA 126. The cluster contains genes for peptide synthetases (mcyABC), polyketide synthases (PKSs; mcyD), chimeric enzymes composed of peptide synthetase and PKS modules (mcyEG), a putative thioesterase (mcyT), a putative ABC transporter (mcyH), and a putative peptide-modifying enzyme (mcyJ). The gene content and arrangement and the sequence of specific domains in the gene products differ from those of the mcy cluster in Microcystis, a unicellular cyanobacterium. The data suggest an evolution of mcy clusters from, rather than to, genes for nodularin (a related pentapeptide) biosynthesis. Our data do not support the idea of horizontal gene transfer of complete mcy gene clusters between the genera. We have established a protocol for stable genetic transformation of Planktothrix, a genus that is characterized by multicellular filaments exhibiting continuous motility. Targeted mutation of mcyJ revealed its function as a gene coding for a O-methyltransferase. The mutant cells produce a novel microcystin variant exhibiting reduced inhibitory activity toward protein phosphatases.
Archives of Microbiology | 2003
Michael Hisbergues; Guntram Christiansen; Leo Rouhiainen; Kaarina Sivonen; Thomas Börner
Microcystins are harmful hepatotoxins produced by many, but not all strains of the cyanobacterial genera Anabaena, Microcystis, Anabaena, Planktothrix, and Nostoc. Waterbodies have to be monitored for the mass development of toxic cyanobacteria; however, because of the close genetic relationship of microcystin-producing and non-producing strains within a genus, identification of microcystin-producers by morphological criteria is not possible. The genomes of microcystin-producing cells contain mcy genes coding for the microcystin synthetase complex. Based on the sequence information of mcy genes from Microcystis and Planktothrix, a primer pair for PCR amplification of a mcyA gene fragment was designed. PCR with this primer pair is a powerful means to identify microcystin-producing strains of the genera Anabaena, Microcystis, and Planktothrix. Moreover, subsequent RFLP analysis of the PCR products generated genus-specific fragments and allowed the genus of the toxin producer to be identified. The assay can be used with DNA from field samples.
Applied and Environmental Microbiology | 2003
Rainer Kurmayer; Guntram Christiansen; Ingrid Chorus
ABSTRACT The working hypotheses tested on a natural population of Microcystis sp. in Lake Wannsee (Berlin, Germany) were that (i) the varying abundance of microcystin-producing genotypes versus non-microcystin-producing genotypes is a key factor for microcystin net production and (ii) the occurrence of a gene for microcystin net production is related to colony morphology, particularly colony size. To test these hypotheses, samples were fractionated by colony size with a sieving procedure during the summer of 2000. Each colony size class was analyzed for cell numbers, the proportion of microcystin-producing genotypes, and microcystin concentrations. The smallest size class of Microcystis colonies (<50 μm) showed the lowest proportion of microcystin-producing genotypes, the highest proportion of non-microcystin-producing cells, and the lowest microcystin cell quotas (sum of microcystins RR, YR, LR, and WR). In contrast, the larger size classes of Microcystis colonies (>100 μm) showed the highest proportion of microcystin-producing genotypes, the lowest proportion of non-microcystin-producing cells, and the highest microcystin cell quotas. The microcystin net production rate was nearly one to one positively related to the population growth rate for the larger colony size classes (>100 μm); however, no relationship could be found for the smaller size classes. It was concluded that the variations found in microcystin net production between colony size classes are chiefly due to differences in genotype composition and that the microcystin net production in the lake is mainly influenced by the abundance of the larger (>100-μm) microcystin-producing colonies.
Applied and Environmental Microbiology | 2005
Linda Tonk; Petra M. Visser; Guntram Christiansen; Elke Dittmann; Eveline O. F. M. Snelder; Claudia Wiedner; Luuc R. Mur; Jef Huisman
ABSTRACT The cyanobacterium Planktothrix agardhii, which is dominant in many shallow eutrophic lakes, can produce hepatotoxic microcystins. Currently, more than 70 different microcystin variants have been described, which differ in toxicity. In this study, the effect of photon irradiance on the production of different microcystin variants by P. agardhii was investigated using light-limited turbidostats. Both the amount of the mRNA transcript of the mcyA gene and the total microcystin production rate increased with photon irradiance up to 60 μmol m−2 s−1, but they started to decrease with irradiance greater than 100 μmol m−2 s−1. The cellular content of total microcystin remained constant, independent of the irradiance. However, of the two main microcystin variants detected in P. agardhii, the microcystin-DeRR content decreased twofold with increased photon irradiance, whereas the microcystin-DeLR content increased threefold. Since microcystin-DeLR is considerably more toxic than microcystin-DeRR, this implies that P. agardhii becomes more toxic at high light intensities.
Applied and Environmental Microbiology | 2006
Guntram Christiansen; Rainer Kurmayer; Qian Liu; Thomas Börner
ABSTRACT The filamentous cyanobacteria Planktothrix spp. occur in the temperate region of the Northern hemisphere. The red-pigmented Planktothrix rubescens bacteria occur in deep, physically stratified, and less eutrophic lakes. Planktothrix is a known producer of the toxic heptapeptide microcystin (MC), which is produced nonribosomally by a large enzyme complex consisting of peptide synthetases and polyketide synthases encoded by a total of nine genes (mcy genes). Planktothrix spp. differ in their cellular MC contents as well as the production of MC variants; however, the mechanisms favoring this diversity are not understood. Recently, the occurrence of Planktothrix strains containing all mcy genes but lacking MC has been reported. In this study, 29 such strains were analyzed to find out if mutations of the mcy genes lead to the inability to synthesize MC. Two deletions, spanning 400 bp (in mcyB; one strain) and 1,869 bp (in mcyHA; three strains), and three insertions (IS), spanning 1,429 bp (in mcyD; eight strains), 1,433 bp (in mcyEG; one strain), and 1,433 bp (in mcyA; one strain), were identified. Though found in different genes and different isolates and transcribed in opposite directions, IS were found to be identical and contained conserved domains assigned to transposable elements. Using mutation-specific primers, two insertions (in mcyD and mcyA) and one deletion (in mcyHA) were found regularly in populations of P. rubescens in different lakes. The results demonstrate for the first time that different mutations resulting in inactivation of MC synthesis do occur frequently and make up a stable proportion of the mcy gene pool in Planktothrix populations over several years.
Chemistry & Biology | 2007
Keishi Ishida; Guntram Christiansen; Wesley Y. Yoshida; Rainer Kurmayer; Martin Welker; Nativitat Valls; Josep Bonjoch; Christian Hertweck; Thomas Börner; Thomas K. Hemscheidt; Elke Dittmann
Aeruginosins represent a group of peptide metabolites isolated from various cyanobacterial genera and from marine sponges that potently inhibit different types of serine proteases. Members of this family are characterized by the presence of a 2-carboxy-6-hydroxyoctahydroindole (Choi) moiety. We have identified and fully sequenced a NRPS gene cluster in the genome of the cyanobacterium Planktothrix agardhii CYA126/8. Insertional mutagenesis of a NRPS component led to the discovery and structural elucidation of two glycopeptides that were designated aeruginoside 126A and aeruginoside 126B. One variant of the aglycone contains a 1-amino-2-(N-amidino-Delta(3)-pyrrolinyl)ethyl moiety at the C terminus, the other bears an agmatine residue. In silico analyses of the aeruginoside biosynthetic genes aerA-aerI as well as additional mutagenesis and feeding studies allowed the prediction of enzymatic steps leading to the formation of aeruginosides and the unusual Choi moiety.
Applied and Environmental Microbiology | 2009
Keishi Ishida; Martin Welker; Guntram Christiansen; Sabrina Cadel-Six; Christiane Bouchier; Elke Dittmann; Christian Hertweck; Nicole Tandeau de Marsac
ABSTRACT Aeruginosins are bioactive oligopeptides that are produced in high structural diversity by strains of the bloom-forming cyanobacterial genera Microcystis and Planktothrix. A hallmark of aeruginosins is the unusual Choi moiety central to the tetrapeptides, while other positions are occupied by variable moieties in individual congeners. Here we report on three aeruginosin synthetase gene clusters (aer) of Microcystis aeruginosa (strains PCC 7806, NIES-98, and NIES-843). The analysis and comparison the aer gene clusters provide the first insight into the molecular basis of biosynthetic and structural plasticity in aeruginosin pathways. Major parts of the aer gene clusters are highly similar in all strains, particularly the genes coding for the first three nonribosomal peptide synthetase (NRPS) modules except for the region coding for the second adenylation domain. However, the gene clusters differ largely in genes coding for tailoring enzymes such as halogenases and sulfotransferases, reflecting structural peculiarities in aeruginosin congeners produced by the individual strains. Significant deviations were further observed in the C-terminal NRPS modules, suggesting two distinct release mechanisms. The architecture of the gene clusters is in agreement with the particular aeruginosin variants that are produced by individual strains, the structures of two of which (aeruginosins 686 A and 686 B) were elucidated. The aer gene clusters of Microcystis and Planktothrix are proposed to originate from a common ancestor and to have evolved to their present-day diversity largely through horizontal gene transfer and recombination events.
Applied and Environmental Microbiology | 2013
Thomas Rohrlack; Guntram Christiansen; Rainer Kurmayer
ABSTRACT Parasitic chytrid fungi can inflict significant mortality on cyanobacteria but frequently fail to keep cyanobacterial dominance and bloom formation in check. Our study tested whether oligopeptide production, a common feature in many cyanobacteria, can be a defensive mechanism against chytrid parasitism. The study employed the cyanobacterial strain Planktothrix NIVA-CYA126/8 and its mutants with knockout mutations for microcystins, anabaenopeptins, and microviridins, major oligopeptide classes to be found in NIVA-CYA126/8. Four chytrid strains were used as parasite models. They are obligate parasites of Planktothrix and are unable to exploit alternative food sources. All chytrid strains were less virulent to the NIVA-CYA126/8 wild type than to at least one of its oligopeptide knockout mutants. One chytrid strain even failed to infect the wild type, while exhibiting considerable virulence to all mutants. It is therefore evident that producing microcystins, microviridins, and/or anabaenopeptins can reduce the virulence of chytrids to Planktothrix, thereby increasing the hosts chance of survival. Microcystins and anabaenopeptins are nonribosomal oligopeptides, while microviridins are produced ribosomally, suggesting that Planktothrix resists chytrids by relying on metabolites that are produced via distinct biosynthetic pathways. Chytrids, on the other hand, can adapt to the oligopeptides produced by Planktothrix in different ways. This setting most likely results in an evolutionary arms race, which would probably lead to Planktothrix and chytrid population structures that closely resemble those actually found in nature. In summary, the findings of the present study suggest oligopeptide production in Planktothrix to be part of a defensive mechanism against chytrid parasitism.
Angewandte Chemie | 2015
Heidi Kaljunen; Stephan H. H. Schiefelbein; Daniela Stummer; Sandra Kozak; Rob Meijers; Guntram Christiansen; Andrea Rentmeister
Many biologically active peptide secondary metabolites of bacteria are produced by modular enzyme complexes, the non-ribosomal peptide synthetases. Substrate selection occurs through an adenylation (A) domain, which activates the cognate amino acid with high fidelity. The recently discovered A domain of an Anabaenopeptin synthetase from Planktothrix agardhii (ApnA A1) is capable of activating two chemically distinct amino acids (Arg and Tyr). Crystal structures of the A domain reveal how both substrates fit into to binding pocket of the enzyme. Analysis of the binding pocket led to the identification of three residues that are critical for substrate recognition. Systematic mutagenesis of these residues created A domains that were monospecific, or changed the substrate specificity to tryptophan. The non-natural amino acid 4-azidophenylalanine is also efficiently activated by a mutant A domain, thus enabling the production of diversified non-ribosomal peptides for bioorthogonal labeling.
Archive | 1999
Elke Dittmann; Guntram Christiansen; Thomas Börner; Brett A. Neilan; Jutta Fastner; Rosmarie Rippka
Bloom-forming cyanobacteria are known to produce a variety of bioactive peptides. Among these secondary metabolites, the potent hepatotoxin microcystin has been most extensively investigated. More than 50 isoforms of this heptapeptide are known, sharing the structure cyclo(-D-Ala-L-X-D-MeAsp-L-Z-Adda-D-Glu-Mdha), where X and Z are variable L-amino acids, Adda is (2S,3S,8S,9S)-3-Amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4, 6-dienoic acid, D-MeAsp is D-erythro-?-iso-aspartic acid, and Mdha is N-methyl-dehydroalanine. Microcystins were shown to be specific inhibitors of the eukaryotic protein phosphatases 1 and 2A, causing liver damage in humans and livestock [1]. Other peptides produced by cyanobacteria include the depsipeptides cyanopeptolin and micropeptin, the thricyclic microviridins, anabaenapeptolins and aeruginosins, with most of them being protease inhibitors [2].