Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guo-fu Hu is active.

Publication


Featured researches published by Guo-fu Hu.


Cancer Research | 2009

Epithelial-Mesenchymal Transition and Cell Cooperativity in Metastasis

Takanori Tsuji; Soichiro Ibaragi; Guo-fu Hu

The role of epithelial-mesenchymal transition (EMT) in metastasis remains controversial. EMT has been postulated as an absolute requirement for tumor invasion and metastasis. Three different models including incomplete EMT, mesenchymal-epithelial transition (MET), and collective migration have been proposed for the role of EMT in cancer invasion and metastasis. However, skepticism remains about whether EMT truly occurs during cancer progression, and if it does, whether it plays an indispensible role in metastasis. Our recent findings suggest that EMT cells are responsible for degrading the surrounding matrix to enable invasion and intravasation of both EMT and non-EMT cells. Only non-EMT cells that have entered the blood stream are able to re-establish colonies in the secondary sites. Here, we discuss an alternative model for the role of EMT in cancer metastasis in which EMT and non-EMT cells cooperate to complete the entire process of spontaneous metastasis.


Oncogene | 2005

Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis.

Koji Kishimoto; Shumei Liu; Takanori Tsuji; Karen A. Olson; Guo-fu Hu

Angiogenin is an angiogenic protein that undergoes nuclear translocation in endothelial cells where it accumulates in the nucleolus and stimulates rRNA transcription, a rate-limiting step in ribosome biogenesis, protein translation, and cell growth. Here, we report that angiogenin is required for cell proliferation induced by various other angiogenic proteins including acidic and basic fibroblast growth factors (aFGF and bFGF), epidermal growth factor (EGF), and vascular endothelial growth factor (VEGF). Downregulation of angiogenin in endothelial cells by small interfering RNA (siRNA) and antisense results in a decrease in rRNA transcription, ribosome biogenesis, and cell proliferation induced by these angiogenic factors. Inhibitors of the nuclear translocation of angiogenin abolish the angiogenic activities of these factors. Stable angiogenin antisense transfection in HeLa cells reduces tumor angiogenesis in athymic mice despite the elevated expression level of bFGF and VEGF. Thus, nuclear angiogenin assumes an essential role in endothelial cell proliferation and is necessary for angiogenesis induced by other angiogenic factors. Angiogenin-stimulated rRNA transcription in endothelial cells may thus serve as a crossroad in the process of angiogenesis induced by various angiogenic factors.


Cancer Research | 2008

Epithelial-mesenchymal transition induced by growth suppressor p12CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth

Takanori Tsuji; Soichiro Ibaragi; Kaori Shima; Miaofen G. Hu; Miki Katsurano; Akira Sasaki; Guo-fu Hu

Epithelial-mesenchymal transition (EMT) has been considered essential for metastasis, a multistep process including local invasion, intravasation, extravasation, and proliferation at distant sites. However, controversy remains as to whether EMT truly happens and how important it is to metastasis. We studied the involvement of EMT in individual steps of metastasis and found that p12(CDK2-AP1), a down-stream effector of transforming growth factor beta, induced EMT of hamster cheek pouch carcinoma-1 cells by promoting the expression of Twist2. EMT cells have an increased invasive but decreased metastatic phenotype. When s.c. inoculated, both EMT and non-EMT cells established primary tumors, but only EMT cells invaded into the adjacent tissues and blood vessels; however, neither cells formed lung metastases. When i.v. inoculated, only non-EMT cells established lung metastases. Moreover, s.c. inoculation of a mixture of the two cell types resulted in intravasation of both cell types and formation of lung metastasis from non-EMT cells. Our results allowed us to propose a novel model for the role of EMT in cancer metastasis. We showed that EMT and non-EMT cells cooperate to complete the spontaneous metastasis process. We thus hypothesize that EMT cells are responsible for degrading the surrounding matrix to lead the way of invasion and intravasation. Non-EMT cells then enter the blood stream and reestablish colonies in the secondary sites.


Annals of Neurology | 2007

Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis

David Wu; Wenhao Yu; Hiroko Kishikawa; Rebecca D. Folkerth; A. John Iafrate; Yiping Shen; Winnie Xin; Katherine B. Sims; Guo-fu Hu

Heterozygous missense mutations in the coding region of angiogenin (ANG), an angiogenic ribonuclease, have been reported in amyotrophic lateral sclerosis (ALS) patients. However, the role of ANG in motor neuron physiology and the functional consequences of these mutations are unknown. We searched for new mutations and sought to define the functional consequences of these mutations.


Cancer Research | 2005

Angiogenin is translocated to the nucleus of HeLa cells and is involved in ribosomal RNA transcription and cell proliferation

Takanori Tsuji; Yeqing Sun; Koji Kishimoto; Karen A. Olson; Shumei Liu; Saori Hirukawa; Guo-fu Hu

Angiogenin is an angiogenic protein known to play a role in rRNA transcription in endothelial cells. Nuclear translocation of angiogenin in endothelial cells decreases as cell density increases and ceases when cells are confluent. Here we report that angiogenin is constantly translocated to the nucleus of HeLa cells in a cell density-independent manner. Down-regulation of angiogenin expression by antisense and RNA interference results in a decrease in rRNA transcription, ribosome biogenesis, proliferation, and tumorigenesis both in vitro and in vivo. Exogenous angiogenin rescues the cells from antisense and RNA interference inhibition. The results showed that angiogenin is constitutively translocated into the nucleus of HeLa cells where it stimulates rRNA transcription. Thus, besides its angiogenic activity, angiogenin also plays a role in cancer cell proliferation.


Annals of Neurology | 2011

Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis

Michael A. van Es; Helenius J. Schelhaas; Paul W.J. van Vught; Nicola Ticozzi; Peter Andersen; Ewout J.N. Groen; Claudia Schulte; Hylke M. Blauw; Max Koppers; Frank P. Diekstra; Katsumi Fumoto; Ashley Lyn Leclerc; Pamela Keagle; Bastiaan R. Bloem; H. Scheffer; Bart F L Van Nuenen; Marka van Blitterswijk; Wouter van Rheenen; Anne Marie Wills; Patrick Lowe; Guo-fu Hu; Wenhao Yu; Hiroko Kishikawa; David Wu; Rebecca D. Folkerth; Claudio Mariani; Stefano Goldwurm; Gianni Pezzoli; Philip Van Damme; Robin Lemmens

Several studies have suggested an increased frequency of variants in the gene encoding angiogenin (ANG) in patients with amyotrophic lateral sclerosis (ALS). Interestingly, a few ALS patients carrying ANG variants also showed signs of Parkinson disease (PD). Furthermore, relatives of ALS patients have an increased risk to develop PD, and the prevalence of concomitant motor neuron disease in PD is higher than expected based on chance occurrence. We therefore investigated whether ANG variants could predispose to both ALS and PD.


Proceedings of the National Academy of Sciences of the United States of America | 2006

A therapeutic target for prostate cancer based on angiogenin-stimulated angiogenesis and cancer cell proliferation

Norie Yoshioka; Li Wang; Koji Kishimoto; Takanori Tsuji; Guo-fu Hu

Human angiogenin is progressively up-regulated in the prostate epithelial cells during the development of prostate cancer from prostate intraepithelial neoplasia (PIN) to invasive adenocarcinoma. Mouse angiogenin is the most up-regulated gene in AKT-induced PIN in prostate-restricted AKT transgenic mice. These results prompted us to study the role that angiogenin plays in prostate cancer. Here, we report that, in addition to its well established role in mediating angiogenesis, angiogenin also directly stimulates prostate cancer cell proliferation. Angiogenin undergoes nuclear translocation in PC-3 human prostate cancer cells grown both in vitro and in mice. Thus, knocking down angiogenin expression in PC-3 human prostate adenocarcinoma cells inhibits ribosomal RNA transcription, in vitro cell proliferation, colony formation in soft agar, and xenograft growth in athymic mice. Blockade of nuclear translocation of angiogenin by the aminoglycoside antibiotic neomycin inhibited PC-3 cell tumor growth in athymic mice and was accompanied by a decrease in both cancer cell proliferation and angiogenesis. These results suggest that angiogenin has a dual effect, angiogenesis and cancer cell proliferation, in prostate cancer and may serve as a molecular target for drug development. Blocking nuclear translocation of angiogenin could have a combined benefit of antiangiogenesis and chemotherapy in treating prostate cancer.


Cancer Research | 2008

SOX9 Is Expressed in Human Fetal Prostate Epithelium and Enhances Prostate Cancer Invasion

Hongyun Wang; Irwin Leav; Soichiro Ibaragi; Michael Wegner; Guo-fu Hu; Michael L. Lu; Steven P. Balk; Xin Yuan

SOX9 is a transcription factor that plays a critical role in the development of multiple tissues. We previously reported that SOX9 in normal human adult prostate was restricted to basal epithelium. SOX9 was also expressed in a subset of prostate cancer (PCa) cells and was increased in relapsed hormone-refractory PCa. Moreover, SOX9 expression in PCa cell lines enhanced tumor cell proliferation and was beta-catenin regulated. Here we report additional in vivo results showing that SOX9 is highly expressed during fetal prostate development by epithelial cells expanding into the mesenchyme, suggesting it may contribute to invasive growth in PCa. Indeed, SOX9 overexpression in LNCaP PCa xenografts enhanced growth, angiogenesis, and invasion. Conversely, short hairpin RNA-mediated SOX9 suppression inhibited the growth of CWR22Rv1 PCa xenografts. These results support important functions of SOX9 in both the development and maintenance of normal prostate, and indicate that these functions contribute to PCa tumor growth and invasion.


Biochemical and Biophysical Research Communications | 2002

The nuclear function of angiogenin in endothelial cells is related to rRNA production.

Zheng-ping Xu; Takanori Tsuji; James F. Riordan; Guo-fu Hu

Angiogenin is a potent angiogenic protein whose inhibition is known to prevent human tumor growth in athymic mice. It is secreted by both tumor and normal cells; and interacts with endothelial and smooth muscle cells to induce a wide range of cellular responses including cell migration and invasion, proliferation, and formation of tubular structures. Angiogenin is rapidly endocytosed and translocated to the cell nucleus where it accumulates in the nucleolus and binds to DNA. Although nuclear translocation is necessary for its angiogenic activity, the nuclear function of angiogenin is unclear. Here we report that exogenous angiogenin enhances the production of 45S rRNA in endothelial cells, and reduction of endogenous angiogenin inhibits its transcription. In a nuclear run-on assay, angiogenin stimulates RNA synthesis including that containing the initiation site sequences of 45S rRNA. This suggests that the nuclear function of angiogenin relates to its capacity to induce rRNA synthesis. Because rRNA transcription is essential for the synthesis of new ribosomes that are necessary for protein translation and cell growth, inhibition of angiogenin-stimulated transcription of rRNA may inhibit angiogenesis and therefore, would serve as a molecular target for therapeutic intervention.


Oncogene | 2009

INACTIVATION OF AMPK ALTERS GENE EXPRESSION AND PROMOTES GROWTH OF PROSTATE CANCER CELLS

Jing Zhou; Wei Huang; Rong Tao; Soichiro Ibaragi; Lan F; Yasuo Ido; Wu X; Yuriy O. Alekseyev; Marc E. Lenburg; Guo-fu Hu; Zhijun Luo

AMP-activated protein kinase (AMPK) serves as a fuel-sensing enzyme that is activated by binding of AMP and subsequent phophorylation by upstream kinases such as the tumor suppressor LKB1, when cells sense an increase in the ratio of AMP to ATP. Acute activation of AMPK stimulates fatty acid oxidation to generate more ATP and simultaneously inhibits ATP-consuming processes including fatty acid and protein syntheses, thereby preserving energy for acute cell-surviving program, whereas chronic activation leads to inhibition of cell growth. The goal of the present study is to explore the mechanisms by which AMPK regulates cell growth. Toward this end, we established stable cell lines by introducing a dominant-negative mutant of AMPK α1 subunit or its shRNA into the prostate cancer C4-2 cells and other cells, or wild type LKB1 into the lung adenocarcinoma A549 and breast MB-MDA-231 cancer cells, both of which lack functional LKB1. Our results showed that the inhibition of AMPK accelerated cell proliferation and promoted malignant behavior such as increased cell migration and anchorage-independent growth. This was associated with decreased G1 population, downregulation of p53 and p21, and upregulation of S6K, IGF-1 and IGF1R. Conversely, treatment of the C4-2 cells with 5-aminoimidazole-4-carboxamide 1-D-ribonucleoside (AICAR), a prototypical AMPK activator, caused opposite changes. In addition, our study using microarray and RT–PCR revealed that AMPK regulated gene expression involved in tumor cell growth and survival. Thus, our study provides novel insights into the mechanisms of AMPK action in cancer cells and presents AMPK as an ideal drug target for cancer therapy.

Collaboration


Dive into the Guo-fu Hu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge