Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guo-Li Song is active.

Publication


Featured researches published by Guo-Li Song.


Journal of Alzheimer's Disease | 2014

Selenomethionine ameliorates cognitive decline, reduces tau hyperphosphorylation, and reverses synaptic deficit in the triple transgenic mouse model of Alzheimer's disease.

Guo-Li Song; Zhong-Hao Zhang; Lei Wen; Chen Chen; Qingxue Shi; Yu Zhang; Jiazuan Ni; Qiong Liu

Disruption of the intracellular balance between free radicals and the antioxidant system is a prominent and early feature in the neuropathology of Alzheimers disease (AD). Selenium, a vital trace element with known antioxidant potential, has been reported to provide neuroprotection through resisting oxidative damage but its therapeutic effect on AD remains to be investigated. The objective of our study was to investigate the potential of selenomethionine (Se-Met), an organic form of selenium, in the treatment of cognitive dysfunction and neuropathology of triple transgenic AD (3 × Tg-AD) mice. 3 × Tg-AD mice, which were four months old, were treated with Se-Met for 3 months and demonstrated significant improvements in cognitive deficit along with an increased selenium level compared with the untreated control mice. Se-Met treatment significantly reduced the level of total tau and phosphorylated tau, mitigated the decrease of synaptic proteins including synaptophysin and postsynaptic density protein 95 in the hippocampus and cortex of the 3 × Tg-AD mice. Meanwhile, glial activation in AD mice was inhibited and the level of reduced glutathione was increased in the treated mice compared with control mice. Additionally, the expression and activity of glycogen synthase kinase 3β and protein phosphatase 2A, two important enzymes involved in tau phosphorylation, were markedly decreased and increased respectively by Se-Met treatment. Thus Se-Met improves cognitive deficit in a murine model of AD, which is associated with reduction in tau expression and hyperphosphorylation, amelioration of inflammation, and restoration of synaptic proteins and antioxidants. This study provides a novel therapeutic approach for the prevention of AD.


The Journal of Neuroscience | 2017

Selenomethionine Mitigates Cognitive Decline by Targeting Both Tau Hyperphosphorylation and Autophagic Clearance in an Alzheimer's Disease Mouse Model

Zhong-Hao Zhang; Qiu-Yan Wu; Rui Zheng; Chen Chen; Yao Chen; Qiong Liu; Peter R. Hoffmann; Jiazuan Ni; Guo-Li Song

Tau pathology was recently identified as a key driver of disease progression and an attractive therapeutic target in Alzheimers disease (AD). Selenomethionine (Se-Met), a major bioactive form of selenium (Se) in organisms with significant antioxidant capacity, reduced the levels of total tau and hyperphosphorylated tau and ameliorated cognitive deficits in younger triple transgenic AD (3xTg-AD) mice. Whether Se-Met has a similar effect on tau pathology and the specific mechanism of action in older 3xTg-AD mice remains unknown. Autophagy is a major self-degradative process to maintain cellular homeostasis and function. Autophagic dysfunction has been implicated in the pathogenesis of multiple age-dependent diseases, including AD. Modulation of autophagy has been shown to retard the accumulation of misfolded and aggregated proteins and to delay the progression of AD. Here, we found that 3xTg-AD mice showed significant improvement in cognitive ability after a 3-month treatment with Se-Met beginning at 8 months of age. In addition to attenuating the hyperphosphorylation of tau by modulating the activity of Akt/glycogen synthase kinase-3β and protein phosphatase 2A, Se-Met-induced reduction of tau was also mediated by an autophagy-based pathway. Specifically, Se-Met improved the initiation of autophagy via the AMP-activated protein kinase–mTOR (mammalian target of rapamycin) signaling pathway and enhanced autophagic flux to promote the clearance of tau in 3xTg-AD mice and primary 3xTg neurons. Thus, our results demonstrate for the first time that Se-Met mitigates cognitive decline by targeting both the hyperphosphorylation of tau and the autophagic clearance of tau in AD mice. These data strongly support Se-Met as a potent nutraceutical for AD therapy. SIGNIFICANCE STATEMENT Selenium has been widely recognized as a vital trace element abundant in the brain with effects of antioxidant, anticancer, and anti-inflammation. In this study, we report that selenomethionine rescues spatial learning and memory impairments in aged 3xTg-AD mice via decreasing the level of tau protein and tau hyperphosphorylation. We find that selenomethionine promotes the initiation of autophagy via the AMPK–mTOR pathway and enhances autophagic flux, thereby facilitating tau clearance in vivo and in vitro. We have now identified an additional, novel mechanism by which selenomethionine improves the cognitive function of AD mice. Specifically, our data suggest the effect of selenium/selenomethionine on an autophagic pathway in Alzheimers disease.


Inorganic Chemistry | 2014

Inhibitory Act of Selenoprotein P on Cu+/Cu2+-Induced Tau Aggregation and Neurotoxicity

Xiubo Du; Youbiao Zheng; Zhi Wang; Yijing Chen; Rui Zhou; Guo-Li Song; Jiazuan Ni; Qiong Liu

Alzheimers disease (AD) is a neurodegenerative disorder that is characterized by peptide and protein misfolding and aggregation, in part due to the presence of excess metal ions such as copper. Aggregation and cytotoxicity of amyloid-β (Aβ) peptide with copper ion have been investigated extensively; however, the effects of metalation on tau are less known. Here, we presented the effects of Cu(+) and Cu(2+) on aggregation and neurotoxicity of the second repeat unit of the microtubule-binding domain of tau (tau-R2). Tau-R2 was demonstrated to bind 0.44 Cu(2+) and 0.34 Cu(+) per monomer with dissociation constants of 1.1 nM and 0.2 pM, respectively. Copper in both oxidation states stimulated the aggregation, ROS production, and neuronal cytotoxicity of tau-R2. We showed that copper-associated tau-R2 aggregates, decreased protein levels of microtubule-associated protein 2 (MAP-2), and synaptophysin in the primarily cultured cortical neurons, reduced mitochondrial density and mobility in the axon and, as a consequence, impaired the growth and probably also the function of neurons. Previously, we reported that the His-rich domain of selenoprotein P (SelP-H) inhibited metal-induced aggregation and toxicity of Aβ, due to its metal chelation ability. Here we demonstrated that SelP-H not only inhibited copper-mediated tau aggregation but also interfered with the ongoing aggregation and reversed the already formed aggregates. More intriguing, SelP-H significantly attenuated Cu(2+)/Cu(+)-tau-R2-induced intracellular ROS production and the impairments of synapse and mitochondrial movement in neurons. This work implies that the surface-exposed His-rich domain of SelP makes it capable of modulating Cu(+)/Cu(2+)-mediated aggregation and neurotoxicity of both Aß and tau and may play important roles in the prevention of AD progression.


Journal of Agricultural and Food Chemistry | 2017

Long-Term Dietary Supplementation with Selenium-Enriched Yeast Improves Cognitive Impairment, Reverses Synaptic Deficits, and Mitigates Tau Pathology in a Triple Transgenic Mouse Model of Alzheimer’s Disease

Zhong-Hao Zhang; Lei Wen; Qiu-Yan Wu; Chen Chen; Rui Zheng; Qiong Liu; Jiazuan Ni; Guo-Li Song

Alzheimers disease (AD) is a progressive neurodegenerative disorder characterized by multiple histopathological changes in the brain and by impairments in memory and cognitive function. Currently, there is no effective treatment that can halt or reverse the progression of this disease. Here, we explored the effects of 3 months of treatment with selenium-enriched yeast (Se-yeast), which is commonly used as a source of organic selenium (Se) for nutrition, on cognitive dysfunction and neuropathology in the triple transgenic mouse model of AD (3×Tg-AD mice). As the results revealed that Se-yeast significantly improved the spatial learning and memory retention of 3×Tg-AD mice, promoted neuronal activity, attenuated the activation of astrocytes and microglia, mitigated synaptic deficits, and reduced the levels of total tau and phosphorylated tau though inhibiting the activity of GSK-3β, dietary supplementation with Se-yeast exerted multiple beneficial effects on the prevention or treatment of AD. These findings provide evidence of a potentially viable compound for AD treatment.


Journal of Alzheimer's Disease | 2017

Selenomethionine Attenuates the Amyloid-β Level by Both Inhibiting Amyloid-β Production and Modulating Autophagy in Neuron-2a/AβPPswe Cells

Zhong-Hao Zhang; Qiu-Yan Wu; Chen Chen; Rui Zheng; Yao Chen; Qiong Liu; Jiazuan Ni; Guo-Li Song

Alzheimers disease (AD) is a complex and progressive neurological disorder, and amyloid-β (Aβ) has been recognized as the major cause of AD. Inhibiting Aβ production and/or enhancing the clearance of Aβ to reduce its levels are still the effective therapeutic strategies pursued in anti-AD research. In previous studies, we have reported that selenomethionine (Se-Met), a major form of selenium in animals and humans with significant antioxidant capacity, can reduce both amyloid-β (Aβ) deposition and tau hyperphosphorylation in a triple transgenic mouse model of AD. In this study, a Se-Met treatment significantly decreased the Aβ levels in Neuron-2a/AβPPswe (N2asw) cells, and the anti-amyloid effect of Se-Met was attributed to its ability to inhibit Aβ generation by suppressing the activity of BACE1. Furthermore, both the LC3-II/LC3-I ratio and the number of LC3-positive puncta were significantly decreased in Se-Met-treated cells, suggesting that Se-Met also promoted Aβ clearance by modulating the autophagy pathway. Subsequently, Se-Met inhibited the initiation of autophagy through the AKT-mTOR-p70S6K signaling pathway and enhanced autophagic turnover by promoting autophagosome-lysosome fusion and autophagic clearance. Our results further highlight the potential therapeutic effects of Se-Met on AD.


International Journal of Molecular Sciences | 2016

Selenomethionine Ameliorates Neuropathology in the Olfactory Bulb of a Triple Transgenic Mouse Model of Alzheimer’s Disease

Zhong-Hao Zhang; Chen Chen; Qiu-Yan Wu; Rui Zheng; Yao Chen; Qiong Liu; Jiazuan Ni; Guo-Li Song

Olfactory dysfunction is an early and common symptom in Alzheimer′s disease (AD) and is reported to be related to several pathologic changes, including the deposition of Aβ and hyperphosphorylated tau protein as well as synaptic impairment. Selenomethionine (Se-Met), the major form of selenium in animals and humans, may be a promising therapeutic option for AD as it decreases the deposition of Aβ and tau hyperphosphorylation in a triple transgenic mouse model of AD (3× Tg-AD). In this study, 4-month-old AD mice were treated with 6 µg/mL Se-Met in drinking water for 12 weeks and the effect of Se-Met on neuropathological deficits in olfactory bulb (OB) of 3× Tg-AD mice was investigated. The administration of Se-Met effectively decreased the production and deposition of Aβ by inhibiting β-site amyloid precursor protein cleaving enzyme 1 (BACE1)-regulated amyloid precursor protein (APP) processing and reduced the level of total tau and phosphorylated tau, which depended on depressing the activity and expression of glycogen synthase kinase-3β (GSK-3β) and cyclin-dependent kinase 5 (CDK5). Meanwhile, Se-Met reduced glial activation, relieved neuroinflammation and attenuated neuronal cell death in the OB of AD mice. So Se-Met could improve pathologic changes of AD in the OB, which further demonstrated the potential therapeutic effect of Se-Met in AD.


ACS Omega | 2018

Effective Theranostic Cyanine for Imaging of Amyloid Species in Vivo and Cognitive Improvements in Mouse Model

Yinhui Li; Chen Chen; Di Xu; Chung-Yan Poon; See-Lok Ho; Rui Zheng; Qiong Liu; Guo-Li Song; Hung-Wing Li; Man Shing Wong

We report herein an investigation of carbazole-based cyanine, (E)-4-(2-(9-(2-(2-methoxyethoxy)ethyl)-9H-carbazol-3-yl)-vinyl)-1-methyl-quinolin-1-iumiodide (SLM), as an effective theranostic agent for Alzheimer’s disease (AD). This cyanine exhibited desirable multifunctional and biological properties, including amyloid-β (Aβ)-oligomerization inhibition, blood–brain barrier permeability, low neurotoxicity, neuroprotective effect against Aβ-induced toxicities, high selectivity and strong binding interactions with Aβ peptide/species, good biostability, as well as strong fluorescence enhancement upon binding to Aβ species for diagnosis and therapy of AD. This cyanine has been successfully applied to perform near-infrared in vivo imaging of Aβ species in transgenic AD mouse model. The triple transgenic AD mice intraperitoneally treated with SLM showed significant recovery of cognitive deficits. Furthermore, those SLM-treated mice exhibited a substantial decrease in both of oligomeric Aβ contents and tau proteins in their brain, which was attributed to the induction of autophagic flux. These findings demonstrated for the first time that SLM is an effective theranostic agent with in vivo efficacy for diagnosis and treatment of AD in mouse models.


Metallomics | 2016

Selenomethionine reduces the deposition of beta-amyloid plaques by modulating β-secretase and enhancing selenoenzymatic activity in a mouse model of Alzheimer's disease

Zhong-Hao Zhang; Chen Chen; Qiu-Yan Wu; Rui Zheng; Qiong Liu; Jiazuan Ni; Peter R. Hoffmann; Guo-Li Song


Biochemical and Biophysical Research Communications | 2017

Selenomethionine promoted hippocampal neurogenesis via the PI3K-Akt-GSK3β-Wnt pathway in a mouse model of Alzheimer's disease.

Rui Zheng; Zhong-Hao Zhang; Chen Chen; Yao Chen; Shi-Zheng Jia; Qiong Liu; Jiazuan Ni; Guo-Li Song


Journal of Shenzhen University Science and Engineering | 2013

Advance reseach on strategies for the prevention of Alzheimer’s disease: Advance reseach on strategies for the prevention of Alzheimer’s disease

Jiazuan Ni; Ping Chen; Qiong Liu; Yizhi Zheng; Xiaoyang He; Guo-Li Song; Ming Ying; Xu Xu

Collaboration


Dive into the Guo-Li Song's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen Chen

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter R. Hoffmann

University of Hawaii at Manoa

View shared research outputs
Researchain Logo
Decentralizing Knowledge