Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guo-Qiang Zhang is active.

Publication


Featured researches published by Guo-Qiang Zhang.


Nature Genetics | 2015

The genome sequence of the orchid Phalaenopsis equestris

Jing Cai; Xin Liu; Kevin Vanneste; Sebastian Proost; Wen Chieh Tsai; Ke-Wei Liu; Li-Jun Chen; Ying He; Qing Xu; Chao Bian; Zhijun Zheng; Fengming Sun; Weiqing Liu; Yu-Yun Hsiao; Zhao-Jun Pan; Chia-Chi Hsu; Ya-Ping Yang; Yi-Chin Hsu; Yu-Chen Chuang; Anne Dievart; Jean-Francois Dufayard; Xun Xu; Wang J; Jun Wang; Xin-Ju Xiao; Xue-Min Zhao; Rong Du; Guo-Qiang Zhang; Meina Wang; Yong-Yu Su

Orchidaceae, renowned for its spectacular flowers and other reproductive and ecological adaptations, is one of the most diverse plant families. Here we present the genome sequence of the tropical epiphytic orchid Phalaenopsis equestris, a frequently used parent species for orchid breeding. P. equestris is the first plant with crassulacean acid metabolism (CAM) for which the genome has been sequenced. Our assembled genome contains 29,431 predicted protein-coding genes. We find that contigs likely to be underassembled, owing to heterozygosity, are enriched for genes that might be involved in self-incompatibility pathways. We find evidence for an orchid-specific paleopolyploidy event that preceded the radiation of most orchid clades, and our results suggest that gene duplication might have contributed to the evolution of CAM photosynthesis in P. equestris. Finally, we find expanded and diversified families of MADS-box C/D-class, B-class AP3 and AGL6-class genes, which might contribute to the highly specialized morphology of orchid flowers.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens

Xiaoping Chen; Hongjie Li; Manish K. Pandey; Qingli Yang; Xiyin Wang; Vanika Garg; Haifen Li; Xiaoyuan Chi; Dadakhalandar Doddamani; Yanbin Hong; Hari D. Upadhyaya; Hui Guo; Aamir W. Khan; Fanghe Zhu; Xiaoyan Zhang; Lijuan Pan; Gary J. Pierce; Guiyuan Zhou; Katta A. V. S. Krishnamohan; Mingna Chen; Ni Zhong; Gaurav Agarwal; Shuanzhu Li; Annapurna Chitikineni; Guo-Qiang Zhang; Shivali Sharma; Na Chen; Haiyan Liu; Pasupuleti Janila; Shaoxiong Li

Significance We present a draft genome of the peanut A-genome progenitor, Arachis duranensis, providing details on total genes present in the genome. Genome analysis suggests that the peanut lineage was affected by at least three polyploidizations since the origin of eudicots. Resequencing of synthetic Arachis tetraploids reveals extensive gene conversion since their formation by human hands. The A. duranensis genome provides a major source of candidate genes for fructification, oil biosynthesis, and allergens, expanding knowledge of understudied areas of plant biology and human health impacts of plants. This study also provides millions of structural variations that can be used as genetic markers for the development of improved peanut varieties through genomics-assisted breeding. Peanut or groundnut (Arachis hypogaea L.), a legume of South American origin, has high seed oil content (45–56%) and is a staple crop in semiarid tropical and subtropical regions, partially because of drought tolerance conferred by its geocarpic reproductive strategy. We present a draft genome of the peanut A-genome progenitor, Arachis duranensis, and 50,324 protein-coding gene models. Patterns of gene duplication suggest the peanut lineage has been affected by at least three polyploidizations since the origin of eudicots. Resequencing of synthetic Arachis tetraploids reveals extensive gene conversion in only three seed-to-seed generations since their formation by human hands, indicating that this process begins virtually immediately following polyploid formation. Expansion of some specific gene families suggests roles in the unusual subterranean fructification of Arachis. For example, the S1Fa-like transcription factor family has 126 Arachis members, in contrast to no more than five members in other examined plant species, and is more highly expressed in roots and etiolated seedlings than green leaves. The A. duranensis genome provides a major source of candidate genes for fructification, oil biosynthesis, and allergens, expanding knowledge of understudied areas of plant biology and human health impacts of plants, informing peanut genetic improvement and aiding deeper sequencing of Arachis diversity.


Nature Communications | 2014

Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes

Xinxin You; Chao Bian; Qijie Zan; Xun Xu; Xin Liu; Jieming Chen; Jintu Wang; Ying Qiu; Wujiao Li; Xinhui Zhang; Ying Sun; Shixi Chen; Wanshu Hong; Yuxiang Li; Shifeng Cheng; Guangyi Fan; Chengcheng Shi; Jie Liang; Y. Tom Tang; Chengye Yang; Zhiqiang Ruan; Jie Bai; Chao Peng; Qian Mu; Jun Lu; Mingjun Fan; Shuang Yang; Zhiyong Huang; Xuanting Jiang; Xiaodong Fang

Mudskippers are amphibious fishes that have developed morphological and physiological adaptations to match their unique lifestyles. Here we perform whole-genome sequencing of four representative mudskippers to elucidate the molecular mechanisms underlying these adaptations. We discover an expansion of innate immune system genes in the mudskippers that may provide defence against terrestrial pathogens. Several genes of the ammonia excretion pathway in the gills have experienced positive selection, suggesting their important roles in mudskippers’ tolerance to environmental ammonia. Some vision-related genes are differentially lost or mutated, illustrating genomic changes associated with aerial vision. Transcriptomic analyses of mudskippers exposed to air highlight regulatory pathways that are up- or down-regulated in response to hypoxia. The present study provides a valuable resource for understanding the molecular mechanisms underlying water-to-land transition of vertebrates.


Scientific Reports | 2016

The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution

Guo-Qiang Zhang; Qing Xu; Chao Bian; Wen Chieh Tsai; Chuan Ming Yeh; Ke-Wei Liu; Kouki Yoshida; Liangsheng Zhang; Song Bin Chang; Fei Chen; Yu Shi; Yong Yu Su; Yong Qiang Zhang; Li Jun Chen; Yayi Yin; Min Lin; Huixia Huang; Hua Deng; Zhi Wen Wang; Shi Lin Zhu; Xiang Zhao; Cao Deng; Shan Ce Niu; Jie Huang; Meina Wang; Guo Hui Liu; Hai-Jun Yang; Xin Ju Xiao; Yu Yun Hsiao; Wan Lin Wu

Orchids make up about 10% of all seed plant species, have great economical value, and are of specific scientific interest because of their renowned flowers and ecological adaptations. Here, we report the first draft genome sequence of a lithophytic orchid, Dendrobium catenatum. We predict 28,910 protein-coding genes, and find evidence of a whole genome duplication shared with Phalaenopsis. We observed the expansion of many resistance-related genes, suggesting a powerful immune system responsible for adaptation to a wide range of ecological niches. We also discovered extensive duplication of genes involved in glucomannan synthase activities, likely related to the synthesis of medicinal polysaccharides. Expansion of MADS-box gene clades ANR1, StMADS11, and MIKC*, involved in the regulation of development and growth, suggests that these expansions are associated with the astonishing diversity of plant architecture in the genus Dendrobium. On the contrary, members of the type I MADS box gene family are missing, which might explain the loss of the endospermous seed. The findings reported here will be important for future studies into polysaccharide synthesis, adaptations to diverse environments and flower architecture of Orchidaceae.


Nature | 2017

The Apostasia genome and the evolution of orchids

Guo-Qiang Zhang; Ke-Wei Liu; Zhen Li; Rolf Lohaus; Yu Yun Hsiao; Shan Ce Niu; Jie Yu Wang; Yao-Cheng Lin; Qing Xu; Li Jun Chen; Kouki Yoshida; Sumire Fujiwara; Zhi Wen Wang; Yong Qiang Zhang; Nobutaka Mitsuda; Meina Wang; Guo Hui Liu; Lorenzo Pecoraro; Hui Xia Huang; Xin Ju Xiao; Min Lin; Xin Yi Wu; Wan Lin Wu; You Yi Chen; Song Bin Chang; Shingo Sakamoto; Masaru Ohme-Takagi; Masafumi Yagi; Si Jin Zeng; Ching Yu Shen

Constituting approximately 10% of flowering plant species, orchids (Orchidaceae) display unique flower morphologies, possess an extraordinary diversity in lifestyle, and have successfully colonized almost every habitat on Earth. Here we report the draft genome sequence of Apostasia shenzhenica, a representative of one of two genera that form a sister lineage to the rest of the Orchidaceae, providing a reference for inferring the genome content and structure of the most recent common ancestor of all extant orchids and improving our understanding of their origins and evolution. In addition, we present transcriptome data for representatives of Vanilloideae, Cypripedioideae and Orchidoideae, and novel third-generation genome data for two species of Epidendroideae, covering all five orchid subfamilies. A. shenzhenica shows clear evidence of a whole-genome duplication, which is shared by all orchids and occurred shortly before their divergence. Comparisons between A. shenzhenica and other orchids and angiosperms also permitted the reconstruction of an ancestral orchid gene toolkit. We identify new gene families, gene family expansions and contractions, and changes within MADS-box gene classes, which control a diverse suite of developmental processes, during orchid evolution. This study sheds new light on the genetic mechanisms underpinning key orchid innovations, including the development of the labellum and gynostemium, pollinia, and seeds without endosperm, as well as the evolution of epiphytism; reveals relationships between the Orchidaceae subfamilies; and helps clarify the evolutionary history of orchids within the angiosperms.


Journal of Systematics and Evolution | 2016

Tree of life for the genera of Chinese vascular plants

Zhi-Duan Chen; Tuo Yang; Li Lin; Li-Min Lu; Hong-Lei Li; Miao Sun; Bing Liu; Min Chen; Yan-Ting Niu; Jianfei Ye; Zhi‐Yong Cao; Hong-Mei Liu; Xiao‐Ming Wang; Wei Wang; Jing-Bo Zhang; Zhen Meng; Wei Cao; Jianhui Li; Sheng‐Dan Wu; Hui‐Ling Zhao; Zhong-Jian Liu; Zhi‐Yuan Du; Qing-Feng Wang; Jing Guo; Xin‐Xin Tan; Jun-Xia Su; Linjing Zhang; Lei‐Lei Yang; Yi‐Ying Liao; Ming-He Li

We reconstructed a phylogenetic tree of Chinese vascular plants (Tracheophyta) using sequences of the chloroplast genes atpB, matK, ndhF, and rbcL and mitochondrial matR. We produced a matrix comprising 6098 species and including 13 695 DNA sequences, of which 1803 were newly generated. Our taxonomic sampling spanned 3114 genera representing 323 families of Chinese vascular plants, covering more than 93% of all genera known from China. The comprehensive large phylogeny supports most relationships among and within families recognized by recent molecular phylogenetic studies for lycophytes, ferns (monilophytes), gymnosperms, and angiosperms. For angiosperms, most families in Angiosperm Phylogeny Group IV are supported as monophyletic, except for a paraphyletic Dipterocarpaceae and Santalaceae. The infrafamilial relationships of several large families and monophyly of some large genera are well supported by our dense taxonomic sampling. Our results showed that two species of Eberhardtia are sister to a clade formed by all other taxa of Sapotaceae, except Sarcosperma. We have made our phylogeny of Chinese vascular plants publically available for the creation of subtrees via SoTree (http://www.darwintree.cn/flora/index.shtml), an automated phylogeny assembly tool for ecologists.


PLOS ONE | 2013

A New Molecular Phylogeny and a New Genus, Pendulorchis, of the Aerides–Vanda Alliance (Orchidaceae: Epidendroideae)

Guo-Qiang Zhang; Ke-Wei Liu; Li Jun Chen; Xin Ju Xiao; Jun Wen Zhai; Li Qiang Li; Jing Cai; Yu Yun Hsiao; Wen Hui Rao; Jie Huang; Xue Yong Ma; Shih Wen Chung; Laiqiang Huang; Wen Chieh Tsai; Zhong-Jian Liu

Background The Aerides–Vanda alliance is a complex group in the subtribe Aeridinae (subfamily Epidendroideae, Orchidaceae). Some phylogenetic systems of this alliance have been previously proposed based on molecular and morphological analyses. However, several taxonomic problems within this alliance as well as between it and its allies remain unsolved. Methodology/Principal Findings We utilized ITS and five plastid DNA regions in this phylogenetic analysis. Consensus trees strongly indicate that the Aerides–Vanda alliance is monophyletic, and the 14 genera of this alliance can be grouped into the following clades with 14 subclades: 1. Aerides, comprising two subclades: Rhynchostylis and Aerides; 2. Ascocentropsis; 3. Papilionanthe; 4. Vanda, comprising five subclades: Neofinetia, Christensonia, Seidenfadenia, Ascocentrum, and Vanda–Trudelia, in which Vanda and Trudelia form a subclade; 5. Tsiorchis, comprising three subclades: Chenorchis, Tsiorchis, and two species of Ascocentrum; 6. Paraholcoglossum; and 7. Holcoglossum. Among the 14 genera, only Ascocentrum is triphyletic: two species of the Ascocentrum subclade, an independent subclade Ascocentrum subclade in the Tsiorchis clade; the Ascocentrum subclade in the Vanda clade; and one species in the Holcoglossum clade. The Vanda and Trudelia species belong to the same subclade. The molecular conclusion is consistent with their morphological characteristics. Conclusions We elucidate the relationship among the 14 genera of the Aerides–Vanda alliance. Our phylogenetic results reveal that the Aerides–Vanda alliance is monophyletic, but it can be divided into 14 genera. The data prove that Ascocentrum is triphyletic. Plants with elongate-terete leaves and small flowers should be treated as a new genus, Pendulorchis. Saccolabium himalaicum (Ascocentrum himalaicum) should be transferred to Pendulorchis. Ascocentrum pumilum, endemic to Taiwan, should be transferred to Holcoglossum. A new combination, Holcoglossum pumilum, was also established. Trudelia should not be recognized as an independent genus. Two new species, Pendulorchis gaoligongensis and Holcoglossum singchianum, were described as well.


PLOS ONE | 2013

A new orchid genus, Danxiaorchis, and phylogenetic analysis of the tribe Calypsoeae.

Jun Wen Zhai; Guo-Qiang Zhang; Li Jun Chen; Xin Ju Xiao; Ke-Wei Liu; Wen Chieh Tsai; Yu Yun Hsiao; Huai Zhen Tian; Jia Qiang Zhu; Mei Na Wang; Fa Guo Wang; Fu-Wu Xing; Zhong-Jian Liu

Background Orchids have numerous species, and their speciation rates are presumed to be exceptionally high, suggesting that orchids are continuously and actively evolving. The wide diversity of orchids has attracted the interest of evolutionary biologists. In this study, a new orchid was discovered on Danxia Mountain in Guangdong, China. However, the phylogenetic clarification of this new orchid requires further molecular, morphological, and phytogeographic analyses. Methodology/Principal Findings A new orchid possesses a labellum with a large Y-shaped callus and two sacs at the base, and cylindrical, fleshy seeds, which make it distinct from all known orchid genera. Phylogenetic methods were applied to a matrix of morphological and molecular characters based on the fragments of the nuclear internal transcribed spacer, chloroplast matK, and rbcL genes of Orchidaceae (74 genera) and Calypsoeae (13 genera). The strict consensus Bayesian inference phylogram strongly supports the division of the Calypsoeae alliance (not including Dactylostalix and Ephippianthus) into seven clades with 11 genera. The sequence data of each species and the morphological characters of each genus were combined into a single dataset. The inferred Bayesian phylogram supports the division of the 13 genera of Calypsoeae into four clades with 13 subclades (genera). Based on the results of our phylogenetic analyses, Calypsoeae, under which the new orchid is classified, represents an independent lineage in the Epidendroideae subfamily. Conclusions Analyses of the combined datasets using Bayesian methods revealed strong evidence that Calypsoeae is a monophyletic tribe consisting of eight well-supported clades with 13 subclades (genera), which are all in agreement with the phytogeography of Calypsoeae. The Danxia orchid represents an independent lineage under the tribe Calypsoeae of the subfamily Epidendroideae. This lineage should be treated as a new genus, which we have named Danxiaorchis, that is parallel to Yoania. Both genera are placed under the subtribe Yoaniinae.


Nature plants | 2018

A genome for gnetophytes and early evolution of seed plants

Tao Wan; Zhi-Ming Liu; Ling-Fei Li; Andrew R. Leitch; Ilia J. Leitch; Rolf Lohaus; Zhong-Jian Liu; Haiping Xin; Yanbing Gong; Yang Liu; Wencai Wang; Ling Yun Chen; Yong Yang; Laura J. Kelly; Ji Yang; Jin-Ling Huang; Zhen Li; Ping Liu; Li Zhang; Hong-Mei Liu; Hui Wang; Shu-Han Deng; Meng Liu; Ji Li; Lu Ma; Yan Liu; Yang Lei; Wei Xu; Ling-Qing Wu; Fan Liu

Gnetophytes are an enigmatic gymnosperm lineage comprising three genera, Gnetum, Welwitschia and Ephedra, which are morphologically distinct from all other seed plants. Their distinctiveness has triggered much debate as to their origin, evolution and phylogenetic placement among seed plants. To increase our understanding of the evolution of gnetophytes, and their relation to other seed plants, we report here a high-quality draft genome sequence for Gnetum montanum, the first for any gnetophyte. By using a novel genome assembly strategy to deal with high levels of heterozygosity, we assembled >4 Gb of sequence encoding 27,491 protein-coding genes. Comparative analysis of the G. montanum genome with other gymnosperm genomes unveiled some remarkable and distinctive genomic features, such as a diverse assemblage of retrotransposons with evidence for elevated frequencies of elimination rather than accumulation, considerable differences in intron architecture, including both length distribution and proportions of (retro) transposon elements, and distinctive patterns of proliferation of functional protein domains. Furthermore, a few gene families showed Gnetum-specific copy number expansions (for example, cellulose synthase) or contractions (for example, Late Embryogenesis Abundant protein), which could be connected with Gnetum’s distinctive morphological innovations associated with their adaptation to warm, mesic environments. Overall, the G. montanum genome enables a better resolution of ancestral genomic features within seed plants, and the identification of genomic characters that distinguish Gnetum from other gymnosperms.The evolution and phylogenetic placement of gnetophytes have remained elusive. The draft genome for a gnetophyte, Gnetum montanum, is now reported. Comparative analyses identify genomic features distinguishing gnetophytes from other gymnosperms.


Molecular Phylogenetics and Evolution | 2016

Evolutionary history of PEPC genes in green plants: Implications for the evolution of CAM in orchids.

Hua Deng; Liangsheng Zhang; Guo-Qiang Zhang; Bao-Qiang Zheng; Zhong-Jian Liu; Yan Wang

The phosphoenolpyruvate carboxylase (PEPC) gene is the key enzyme in CAM and C4 photosynthesis. A detailed phylogenetic analysis of the PEPC family was performed using sequences from 60 available published plant genomes, the Phalaenopsis equestris genome and RNA-Seq of 15 additional orchid species. The PEPC family consists of three distinct subfamilies, PPC-1, PPC-2, and PPC-3, all of which share a recent common ancestor in chlorophyte algae. The eudicot PPC-1 lineage separated into two clades due to whole genome duplication (WGD). Similarly, the monocot PPC-1 lineage also divided into PPC-1M1 and PPC-1M2 through an ancient duplication event. The monocot CAM- or C4-related PEPC originated from the clade PPC-1M1. WGD may not be the major driver for the performance of CAM function by PEPC, although it increased the number of copies of the PEPC gene. CAM may have evolved early in monocots, as the CAM-related PEPC of orchids originated from the monocot ancient duplication, and the earliest CAM-related PEPC may have evolved immediately after the diversification of monocots, with CAM developing prior to C4. Our results represent the most complete evolutionary history of PEPC genes in green plants to date and particularly elucidate the origin of PEPC in orchids.

Collaboration


Dive into the Guo-Qiang Zhang's collaboration.

Top Co-Authors

Avatar

Zhong-Jian Liu

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Li-Jun Chen

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qing Xu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wen Chieh Tsai

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Ming-He Li

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Xin Ju Xiao

Beijing Forestry University

View shared research outputs
Top Co-Authors

Avatar

Yu Yun Hsiao

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Chao Bian

Chinese Academy of Fishery Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge