Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guo-Shun An is active.

Publication


Featured researches published by Guo-Shun An.


Free Radical Biology and Medicine | 2010

Stabilization of mitochondrial function by tetramethylpyrazine protects against kainate-induced oxidative lesions in the rat hippocampus

Shu-Yan Li; Yu-Hong Jia; Wen-Ge Sun; Yuan Tang; Guo-Shun An; Ju-Hua Ni; Hong-Ti Jia

Mitochondria are critical regulators of cell death, a key feature of neurodegeneration. Reactive oxygen species (ROS) are crucial to Ca(2+)-mediated effects of glutamate receptor activation leading to neuronal degeneration. Tetramethylpyrazine (TMP) is a principal ingredient of Ligusticum wallichi Franchat (a Chinese herb), used for treatment of cardiovascular and cerebrovascular ischemic diseases. However, its protection against oxidative brain injury associated with excessive activation of glutamate receptors is unknown. In this study, we demonstrate TMP neuroprotection against kainate-induced excitotoxicity in vitro and in vivo. We found that TMP could partly alleviate kainate-induced status epilepticus in rats and prevented and rescued neuronal loss in the hippocampal CA3 but not the CA1 region. The partial prevention and rescue of neuronal loss by TMP were attributable to the preservation of the structural and functional integrity of mitochondria, evidenced by maintaining the mitochondrial membrane potential, ATP production, and complex I and III activities. Stabilization of mitochondrial function was linked to the observation that TMP could function as a reductant/antioxidant to quench ROS, block lipid peroxidation, and protect enzymatic antioxidants such as glutathione peroxidase and glutathione reductase. These results suggest that TMP may protect against oxidative brain injury by stabilization of mitochondrial function through quenching of ROS.


Biochemical Pharmacology | 2009

Inhibition of topoisomerase II by 8-chloro-adenosine triphosphate induces DNA double-stranded breaks in 8-chloro-adenosine-exposed human myelocytic leukemia K562 cells.

Sheng-Yong Yang; Xiu-Zhen Jia; Li-Yan Feng; Shu-Yan Li; Guo-Shun An; Ju-Hua Ni; Hong-Ti Jia

8-Chloro-cAMP and 8-chloro-adenosine (8-Cl-Ado) are known to inhibit proliferation of cancer cells by converting 8-Cl-Ado into an ATP analog, 8-chloro-ATP (8-Cl-ATP). Because type II topoisomerases (Topo II) are ATP-dependent, we infer that 8-Cl-Ado exposure might interfere with Topo II activities and DNA metabolism in cells. We found that 8-Cl-Ado exposure inhibited Topo II-catalytic activities in K562 cells, as revealed by decreased relaxation of the supercoiled pUC19 DNA and inhibited decatenation of the kinetoplast DNA (kDNA). In vitro assays showed that 8-Cl-ATP, but not 8-Cl-Ado, could directly inhibit Topo IIalpha-catalyzed relaxation and decatenation of substrate DNA. Furthermore, 8-Cl-ATP inhibited Topo II-catalyzed ATP hydrolysis and increased salt-stabilized closed clamp. In addition, 8-Cl-Ado exposure decreased bromo-deoxyuridine (BrdU) incorporation into DNA and led to enhanced DNA double-stranded breaks (DSBs) and to increased formation of gamma-H2AX nuclear foci in exposed K562 cells. Together, 8-Cl-Ado/8-Cl-ATP can inhibit Topo II activities in cells, thereby inhibiting DNA synthesis and inducing DNA DSBs, which may contribute to 8-Cl-Ado-inhibited proliferation of cancers.


Biochemical Pharmacology | 2009

Inhibition of CHK1 kinase by Gö6976 converts 8-chloro-adenosine-induced G2/M arrest into S arrest in human myelocytic leukemia K562 cells.

Xiu-Zhen Jia; Sheng-Yong Yang; Jing Zhou; Shu-Yan Li; Ju-Hua Ni; Guo-Shun An; Hong-Ti Jia

8-Chloro-cAMP (8-Cl-cAMP) and its metabolite 8-chloro-adenosine (8-Cl-Ado) inhibit cell growth by 8-Cl-Ado-converted 8-Cl-ATP that targets cell-cycle control and RNA metabolism. However, the cell-cycle checkpoint pathways remain to be identified. Recent studies have shown that 8-Cl-cAMP administration and 8-Cl-Ado exposure may damage chromosomal DNA in vivo and in vitro. In this study, we demonstrate that 8-Cl-Ado-induced DNA damage activates G2/M phase checkpoint, which is associated with ATM-activated CHK1-CDC25C-CDC2 pathway joined by BRCA1-CHK1 branch in apoptosis-resistant human myelocytic leukemia K562 (p53-null) cells. Inhibition of CHK1 kinase by Gö6976, an inhibitor of CHK1 activity, can promote DNA damage and lead to the activation of CHK2, converting G2/M checkpoint into intra-S-phase checkpoint in which two parallel branches, the ATM-CHK2-CDC25A-CDK2 and the ATM-NBS1/SMC1 cascades, are involved. These observations may provide aid in better understanding of the mechanisms of 8-Cl-cAMP and 8-Cl-Ado actions and in potential design of the combined therapy.


Journal of Cellular Biochemistry | 2010

p14ARF interacts with E2F factors to form p14ARF-E2F/partner-DNA complexes repressing E2F-dependent transcription.

Hai-Jun Zhang; Wen-Juan Li; Yan-Yan Gu; Shu-Yan Li; Guo-Shun An; Ju-Hua Ni; Hong-Ti Jia

Primarily, E2F factors such as E2F1, ‐2, and ‐3 stimulate cell‐cycle progression, while ARF tumor suppressor mediates growth suppression. The ARF gene can be induced by oncogenic signal through activating E2F‐dependent transcription. In turn, ARF may target E2F for its degradation via a p53‐dependent mechanism. However, it remains unclear how the cell keeps the balance between the functional opposites of E2F and ARF. In this study, we demonstrate that p14ARF interacts with E2F1–3 factors to directly repress their transcriptional activities through forming p14ARF–E2F/partner‐DNA super complexes, regardless of E2F protein degradation. The inhibition of E2F transcriptional activities by p14ARF in this manner occurs commonly in a variety of cell types, including p53‐deficient and p53‐wild type cells. Thus, E2F‐mediated activation of the ARF gene and ARF‐mediated functional inhibition of E2F compose a feedback loop, by which the two opposites act in concert to regulate cell proliferation and apoptosis, depending on the cellular context and the environment. J. Cell. Biochem. 109: 693–701, 2010.


Molecular Genetics and Genomics | 2009

Synergistic up-regulation of muscle LIM protein expression in C2C12 and NIH3T3 cells by myogenin and MEF2C

Zhen-Xing Ji; Chao Du; Guo-Sheng Wu; Shu-Yan Li; Guo-Shun An; Yu-Xi Yang; Ru Jia; Hong-Ti Jia; Ju-Hua Ni

Although the role of muscle LIM protein (MLP, also known as CRP3), a LIM-only protein of LIM domain-containing protein family, is well-characterized, the mechanism by which the MLP gene expresses remains unclear. Herein, we demonstrate that myogenin and myocyte enhancer factor 2C (MEF2C) cooperate in activating the MLP gene in myogenesis. RT-PCR, real-time PCR and Western blotting showed that overexpression of myogenin or myogenin plus MEF2C led to induction of the MLP gene in differentiating C2C12 and NIH3T3 fibroblasts. By contrary, knocking-down of myogenin by RNA interference (RNAi) suppressed MLP expression in differentiating C2C12. Deletion and reporter enzyme assay revealed that the promoter activity was determined largely by the region extending from −260 to −173, which containing three E-box (CANNTG motif) candidates. Site-directed mutagenesis demonstrated that the E-box at position −186 to −180 was crucial for activating the promoter by myogenin. Furthermore, MEF2C could enhance myogenin-mediated activation of the promoter. In addition, chromatin immunoprecipitation (ChIP) and re-ChIP showed that myogenin and MEF2C were associated with the activated MLP promoter. Together, these results suggest that myogenin and MEF2C cooperate in the MLP gene activation. The linking of the MLP gene activation with myogenin and MEF2C may facilitate myogenin-mediated differentiation of striated muscle.


Biochemical and Biophysical Research Communications | 2014

E2F1-regulated DROSHA promotes miR-630 biosynthesis in cisplatin-exposed cancer cells

Ji-Xiang Cao; Shu-Yan Li; Guo-Shun An; Zebin Mao; Hong-Ti Jia; Ju-Hua Ni

DNA damage may regulate microRNA (miRNA) biosynthesis at the levels of miRNA transcription, processing and maturation. Although involvement of E2F1 in the regulation of miRNA gene activation in response to DNA damage has been documented, little is known about the role of E2F1 in miRNA processing. In this study we demonstrate that E2F1 enhances miR-630 biosynthesis under cisplatin (CIS) exposure through promoting DROSHA-mediated pri-miR-630 processing. Northern blot and RT-qPCR revealed that CIS exposure caused not only an increase in pri-miR-630 but also much more increase in pre-miR-630 and mature miR-630. The increases in pri-miR-630 and pre-miR-630 expression in unmatched proportion indicated that primary transcript processing was involved in CIS-stimulated miR-630 biosynthesis. Furthermore, combination of reporter enzyme assay with mutation and over-expression of E2F1 showed that induction of DROSHA promoted miR-630 expression, in which CIS-induced E2F1 activated DROSHA gene expression by recognizing and binding two E2F1 sites at the positions -214/-207 and -167/-160 of the DROSHA promoter. The increased binding of E2F1 to the DROSHA promoter in CIS-exposed cells was further evidenced by chromatin immunoprecipitation assay. Together, E2F1-regulated DROSHA promotes pri-miR-630 processing, thereby, contributes to CIS-stimulated miR-630 expression. The involvement of E2F1-dependent DROSHA activation in pri-miRNA processing under DNA damage stress will provide further insight into the regulation of miRNA biosynthesis. These data also give us a deeper understanding of E2F1 role in response to DNA damage.


Molecular and Cellular Biochemistry | 2015

E2F1 regulates p53R2 gene expression in p53-deficient cells

Jun-Juan Qi; Ling Liu; Ji-Xiang Cao; Guo-Shun An; Shu-Yan Li; Gang Li; Hong-Ti Jia; Ju-Hua Ni

The p53R2 gene encoding a small subunit of the ribonucleotide reductase has been identified as a p53-inducible gene. Although this gene is discovered as a target for p53 family proteins, the mechanism underlying p53R2 induction by DNA damage in p53-defiencient cells remains to be elucidated. In this study, we demonstrate that transcription factor E2F1 regulates the p53R2 gene expression in p53-deficient cells. We found that p53R2 was a target for E2F1 in DNA damage response (DDR), because ectopic expression of E2F1 in HCT116-p53−/− cells resulted in the increase of p53R2 mRNA and protein expression, and silencing E2F1 diminished its basic expression. Combination of luciferase reporter assay with overexpression or knockdown of E2F1 revealed that E2F1 directly activates the p53R2 gene. Chromatin immunoprecipitation (ChIP) assay showed E2F1 directly bound to the site (TTTGGCGG) at position −684 to −677 of the promoter under E2F1 overexpression or adriamycin (ADR) exposure. Moreover, silencing p53R2 could enhance apoptotic cell death in both HCT116-p53−/− and HCT116-p53+/+ compared to ADR exposure, indicating that p53R2 may protect cancer cell from ADR-induced apoptosis. Together, we have identified a new role of E2F1 in the regulation of p53R2 expression in DDR, and silencing p53R2 may sensitize cancer cells to ADR-induced apoptosis. Our data support the notion that p53R2 is a potential target for cancer therapy. The involvement of E2F1-dependent p53R2 activation in DDR will provide further insight into the induction of p53R2 in p53-deficient cells. These data also give us a deeper understanding of E2F1 role in DDR.


Cell Cycle | 2014

ATM-dependent E2F1 accumulation in the nucleolus is an indicator of ribosomal stress in early response to DNA damage.

Ya-Qiong Jin; Guo-Shun An; Ju-Hua Ni; Shu-Yan Li; Hong-Ti Jia

The nucleolus plays a major role in ribosome biogenesis. Most genotoxic agents disrupt nucleolar structure and function, which results in the stabilization/activation of p53, inducing cell cycle arrest or apoptosis. Likewise, transcription factor E2F1 as a DNA damage responsive protein also plays roles in cell cycle arrest, DNA repair, or apoptosis in response to DNA damage through transcriptional response and protein–protein interaction. Furthermore, E2F1 is known to be involved in regulating rRNA transcription. However, how E2F1 displays in coordinating DNA damage and nucleolar stress is unclear. In this study, we demonstrate that ATM-dependent E2F1 accumulation in the nucleolus is a characteristic feature of nucleolar stress in early response to DNA damage. We found that at the early stage of DNA damage, E2F1 accumulation in the nucleolus was an ATM-dependent and a common event in p53-suficient and -deficient cells. Increased nucleolar E2F1 was sequestered by the nucleolar protein p14ARF, which repressed E2F1-dependent rRNA transcription initiation, and was coupled with S phase. Our data indicate that early accumulation of E2F1 in the nucleolus is an indicator for nucleolar stress and a component of ATM pathway, which presumably buffers elevation of E2F1 in the nucleoplasm and coordinates the diversifying mechanisms of E2F1 acts in cell cycle progression and apoptosis in early response to DNA damage.


Biochemistry | 2012

E2F1 enhances 8-Chloro-adenosine-induced G2/M arrest and apoptosis in A549 and H1299 lung cancer cells

Hong-Ying Duan; Ji-Xiang Cao; Jun-Juan Qi; Guo-Sheng Wu; Shu-Yan Li; Guo-Shun An; Hong-Ti Jia; Wang-Wei Cai; Ju-Hua Ni

The E2F1 transcription factor is a well known regulator of cell proliferation and apoptosis, but its role in response to DNA damage is less clear. 8-Chloro-adenosine (8-Cl-Ado), a nucleoside analog, can inhibit proliferation in a variety of human tumor cells. However, it is still elusive how the agent acts on tumors. Here we show that A549 and H1299 cells formed DNA double-strand breaks after 8-Cl-Ado exposure, accompanied by E2F1 upregulation at protein level. Overexpressed wild-type (E2F1-wt) colocalized with double-strand break marker γ-H2AX and promoted G2/M arrest in 8-Cl-Ado-exposed A549 and H1299, while expressed S31A mutant of E2F1 (E2F1-mu) significantly reduced ability to accumulate at sites of DNA damage and G2/M arrest, suggesting that E2F1 is required for activating G2/M checkpoint pathway upon DNA damage. Transfection of either E2F1-wt or E2F1-mu plasmid promoted apoptosis in 8-Cl-Ado-exposed cells, indicating that 8-Cl-Ado may induce apoptosis in E2F1-dependent and E2F1-independent ways. These findings demonstrate that E2F1 plays a crucial role in 8-Cl-Ado-induced G2/M arrest but is dispensable for 8-Cl-Ado-induced apoptosis. These data also suggest that the mechanism of 8-Cl-Ado action is complicated.


Biochemistry | 2010

Calcium signal-initiated early activation of NF-κB in neurons is a neuroprotective event in response to kainic acid-induced excitotoxicity

Shu-Yan Li; Wen-Ge Sun; Yu-Hong Jia; Guo-Sheng Wu; Guo-Shun An; Ju-Hua Ni; Hong-Ti Jia

We demonstrate that activation of nuclear factor κB (NF-κB) in neurons is neuroprotective in response to kainic acid (KA)-induced excitotoxicity. Combination of Western blotting, immunocytochemistry, and electrophoresis mobility shift assay showed that KA exposure induced a fast but transient nuclear translocation of the NF-κB p65 subunit and increased DNA-binding activity of NF-κB in primary cultured cortical neurons. The transient NF-κB activity was associated with upregulation of antiapoptotic Bcl-xL and XIAP gene products revealed by real-time PCR. Knockdown of p65 decreased neuronal viability and antiapoptotic gene expression. In addition, we showed that KA-stimulated DNA-binding activity of NF-κB was associated with reactive oxygen species and calcium signals, using AMPA/KA receptor antagonist, calcium chelator, and antioxidant. These results suggest that the fast and transient activation of NF-κB initiated by calcium signals is one of the important proximal events in response to KA-induced excitotoxicity, which has neuroprotective effect against KA-induced apoptosis.

Collaboration


Dive into the Guo-Shun An's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong-Ti Jia

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge