Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guochen Sun is active.

Publication


Featured researches published by Guochen Sun.


Stroke | 2014

Comparison of the Tada Formula With Software Slicer Precise and Low-Cost Method for Volume Assessment of Intracerebral Hematoma

Xinghua Xu; Xiaolei Chen; Jun Zhang; Yi Zheng; Guochen Sun; Xinguang Yu; Bainan Xu

Background and Purpose— The Tada (ABC/2) formula has been used widely for volume assessment of intracerebral hematoma. However, the formula is crude for irregularly shaped hematoma. We aimed to compare the accuracy of the ABC/2 formula with open source software Slicer. Methods— Computed tomographic images of 294 patients with spontaneous intracerebral hematoma were collected. Hematoma volumes were assessed with the ABC/2 formula and calculated with software 3D Slicer. Results of these 2 methods were compared with regard to hematoma size and shape. Results— The estimated hematoma volume was 58.41±37.83 cm3 using the ABC/2 formula, compared with 50.38±31.93 cm3 with 3D Slicer (mean percentage deviation, 16.38±9.15%). When allocate patients into groups according to hematoma size, the mean estimation error were 3.24 cm3 (17.72%), 5.85 cm3 (13.72%), and 15.14 cm3 (17.48%) for groups 1, 2, and 3, respectively. When divided by shape, estimation error was 3.33 cm3 (9.76%), 7.19 cm3 (18.37%), and 29.39 cm3 (39.12%) for regular, irregular, and multilobular hematomas. Conclusions— There is significant estimation error using the ABC/2 formula to calculate hematoma volume. Compared with hematoma size, estimation error is more significantly associated with hematoma shape.


Journal of Neurosurgery | 2016

In vivo visualization of the facial nerve in patients with acoustic neuroma using diffusion tensor imaging–based fiber tracking

Fei Song; Yuan-zheng Hou; Guochen Sun; Xiaolei Chen; Bainan Xu; Jason H. Huang; Jun Zhang

OBJECTIVE Preoperative determination of the facial nerve (FN) course is essential to preserving its function. Neither regular preoperative imaging examination nor intraoperative electrophysiological monitoring is able to determine the exact position of the FN. The diffusion tensor imaging-based fiber tracking (DTI-FT) technique has been widely used for the preoperative noninvasive visualization of the neural fasciculus in the white matter of brain. However, further studies are required to establish its role in the preoperative visualization of the FN in acoustic neuroma surgery. The object of this study is to evaluate the feasibility of using DTI-FT to visualize the FN. METHODS Data from 15 patients with acoustic neuromas were collected using 3-T MRI. The visualized FN course and its position relative to the tumors were determined using DTI-FT with 3D Slicer software. The preoperative visualization results of FN tracking were verified using microscopic observation and electrophysiological monitoring during microsurgery. RESULTS Preoperative visualization of the FN using DTI-FT was observed in 93.3% of the patients. However, in 92.9% of the patients, the FN visualization results were consistent with the actual surgery. CONCLUSIONS DTI-FT, in combination with intraoperative FN electrophysiological monitoring, demonstrated improved FN preservation in patients with acoustic neuroma. FN visualization mainly included the facial-vestibular nerve complex of the FN and vestibular nerve.


Journal of Neurosurgery | 2017

Effectiveness of endoscopic surgery for supratentorial hypertensive intracerebral hemorrhage: a comparison with craniotomy

Xinghua Xu; Xiaolei Chen; Fangye Li; Xuan Zheng; Qun Wang; Guochen Sun; Jun Zhang; Bainan Xu

OBJECTIVE The goal of this study was to investigate the effectiveness and practicality of endoscopic surgery for treatment of supratentorial hypertensive intracerebral hemorrhage (HICH) compared with traditional craniotomy. METHODS The authors retrospectively analyzed 151 consecutive patients who were operated on for treatment of supratentorial HICH between January 2009 and June 2014 in the Department of Neurosurgery at Chinese PLA General Hospital. Patients were separated into an endoscopy group (82 cases) and a craniotomy group (69 cases), depending on the surgery they received. The hematoma evacuation rate was calculated using 3D Slicer software to measure the hematoma volume. Comparisons of operative time, intraoperative blood loss, Glasgow Coma Scale score 1 week after surgery, hospitalization time, and modified Rankin Scale score 6 months after surgery were also made between these groups. RESULTS There was no statistically significant difference in preoperative data between the endoscopy group and the craniotomy group (p > 0.05). The hematoma evacuation rate was 90.5% ± 6.5% in the endoscopy group and 82.3% ± 8.6% in the craniotomy group, which was statistically significant (p < 0.01). The operative time was 1.6 ± 0.7 hours in the endoscopy group and 5.2 ± 1.8 hours in the craniotomy group (p < 0.01). The intraoperative blood loss was 91.4 ± 93.1 ml in the endoscopy group and 605.6 ± 602.3 ml in the craniotomy group (p < 0.01). The 1-week postoperative Glasgow Coma Scale score was 11.5 ± 2.9 in the endoscopy group and 8.3 ± 3.8 in the craniotomy group (p < 0.01). The hospital stay was 11.6 ± 6.9 days in the endoscopy group and 13.2 ± 7.9 days in the craniotomy group (p < 0.05). The mean modified Rankin Scale score 6 months after surgery was 3.2 ± 1.5 in the endoscopy group and 4.1 ± 1.9 in the craniotomy group (p < 0.01). Patients had better recovery in the endoscopy group than in the craniotomy group. Data are expressed as the mean ± SD. CONCLUSIONS Compared with traditional craniotomy, endoscopic surgery was more effective, less invasive, and may have improved the prognoses of patients with supratentorial HICH. Endoscopic surgery is a promising method for treatment of supratentorial HICH. With the development of endoscope technology, endoscopic evacuation will become more widely used in the clinic. Prospective randomized controlled trials are needed.


World Neurosurgery | 2016

A Preliminary Experience with Use of Intraoperative Magnetic Resonance Imaging in Thalamic Glioma Surgery: A Case Series of 38 Patients.

Xuan Zheng; Xinghua Xu; Hui Zhang; Qun Wang; Xiao-dong Ma; Xiaolei Chen; Guochen Sun; Jiashu Zhang; Jinli Jiang; Bainan Xu; Jun Zhang

BACKGROUND Thalamic gliomas are rare tumors that constitute 1%-5% of all central nervous system tumors. Despite advanced techniques and equipment, surgical resection remains challenging because of the vital structures adjacent to the tumor. Intraoperative magnetic resonance imaging (MRI) might play an active role during brain tumor surgery because it compensates for brain shift or operation-induced hemorrhage, which are challenging issues for neurosurgeons. METHODS We reviewed 38 patients treated surgically under intraoperative MRI guidance between January 2008 and July 2015 at our center. Preoperative, intraoperative, and postoperative MRI scans were reviewed. Preoperative and postoperative motor power, morbidity and mortality, resection rate, surgical approach, pathologic results, and patient demographics were also reviewed. RESULTS Mean patient age was 37 years ± 18; 12 patients were included in the low-grade group, and 26 patients were included in the high-grade group. Under intraoperative MRI guidance, the gross total resection rate was increased from 16 (42.1%) to 26 (68.4%), and the near-total or subtotal resection rate was increased from 5 (13.2%) to 9 (23.7%). Hematoma formation was discovered in 3 patients on intraoperative MRI scan; each patient underwent a hemostatic operation immediately. CONCLUSIONS With improvements in neurosurgical techniques and equipment, surgical resection is considered feasible in patients with thalamic gliomas. Intraoperative MRI may be helpful in achieving the maximal resection rate with minimal surgical-related morbidity. However, because of severe disease progression, the overall prognosis is unfavorable.


Childs Nervous System | 2013

Resection of subependymal giant cell astrocytoma guided by intraoperative magnetic resonance imaging and neuronavigation.

Hecheng Ren; Xiaolei Chen; Guochen Sun; Shen Hu; Zheng G; Fangye Li; Li Jj; Bainan Xu

PurposeSubependymal giant cell astrocytoma (SEGA) is a rare, benign tumor that occurs mainly in children; complete resection can achieve cure. Guidance of surgery by combined intraoperative magnetic resonance imaging (iMRI) and functional neuronavigation is reported to achieve more radical resection and reduced complications. However, reports about the resection of SEGA with such guidance are rare. We report here our preliminary experience of the resection of SEGA guided by iMRI and neuronavigation, focusing on the feasibility, benefits, and pitfalls of this combination of techniques.MethodsWe performed resection of SEGA guided by combined iMRI and functional neuronavigation in seven children. The first iMRI was performed when the surgeon believed that the tumor had been completely resected; the last iMRI was performed immediately after closure. Additional scans were performed as needed.ResultsSuccessful resection was achieved in all seven patients using this combination of techniques. The iMRI scans detected residual tumor in three patients and a large, remote epidural hematoma in one patient. Further resection or other surgery was performed in these four patients. Complete resection was eventually achieved in all patients. There were no cases of surgery-related neurological dysfunction, except transient memory loss in one patient. No recurrence of tumor or hydrocephalus was observed in any patients during the follow-up period.ConclusionsResection of SEGA in children guided by combined iMRI and neuronavigation is feasible and safe. This combination of techniques enables a higher complete resection rate and reduces brain injury and other unexpected events during surgery.


Journal of Neurosurgery | 2017

Image-guided endoscopic surgery for spontaneous supratentorial intracerebral hematoma

Guochen Sun; Xiaolei Chen; Yuan-zheng Hou; Xinguang Yu; Xiao-dong Ma; Gang Liu; Lei Liu; Jiashu Zhang; Hao Tang; Ru-yuan Zhu; Dingbiao Zhou; Bainan Xu

OBJECTIVE Endoscopic removal of intracerebral hematomas is becoming increasingly common, but there is no standard technique. The authors explored the use of a simple image-guided endoscopic method for removal of spontaneous supratentorial hematomas. METHODS Virtual reality technology based on a hospital picture archiving and communications systems (PACS) was used in 3D hematoma visualization and surgical planning. Augmented reality based on an Android smartphone app, Sina neurosurgical assist, allowed a projection of the hematoma to be seen on the patients scalp to facilitate selection of the best trajectory to the center of the hematoma. A obturator and transparent sheath were used to establish a working channel, and an endoscope and a metal suction apparatus were used to remove the hematoma. RESULTS A total of 25 patients were included in the study, including 18 with putamen hemorrhages and 7 with lobar cerebral hemorrhages. Virtual reality combined with augmented reality helped in achieving the desired position with the obturator and sheath. The median time from the initial surgical incision to completion of closure was 50 minutes (range 40-70 minutes). The actual endoscopic operating time was 30 (range 15-50) minutes. The median blood loss was 80 (range 40-150) ml. No patient experienced postoperative rebleeding. The average hematoma evacuation rate was 97%. The mean (± SD) preoperative Glasgow Coma Scale (GCS) score was 6.7 ± 3.2; 1 week after hematoma evacuation the mean GCS score had improved to 11.9 ± 3.1 (p < 0.01). CONCLUSIONS Virtual reality using hospital PACS and augmented reality with a smartphone app helped precisely localize hematomas and plan the appropriate endoscopic approach. A transparent sheath helped establish a surgical channel, and an endoscope enabled observation of the hematomas location to achieve satisfactory hematoma removal.


World Neurosurgery | 2016

Impact of Virtual and Augmented Reality Based on Intraoperative Magnetic Resonance Imaging and Functional Neuronavigation in Glioma Surgery Involving Eloquent Areas.

Guochen Sun; Fei Wang; Xiaolei Chen; Xinguang Yu; Xiao-dong Ma; Dingbiao Zhou; Ru-yuan Zhu; Bainan Xu

BACKGROUND The utility of virtual and augmented reality based on functional neuronavigation and intraoperative magnetic resonance imaging (MRI) for glioma surgery has not been previously investigated. METHODS The study population consisted of 79 glioma patients and 55 control subjects. Preoperatively, the lesion and related eloquent structures were visualized by diffusion tensor tractography and blood oxygen level-dependent functional MRI. Intraoperatively, microscope-based functional neuronavigation was used to integrate the reconstructed eloquent structure and the real head and brain, which enabled safe resection of the lesion. Intraoperative MRI was used to verify brain shift during the surgical process and provided quality control during surgery. The control group underwent surgery guided by anatomic neuronavigation. RESULTS Virtual and augmented reality protocols based on functional neuronavigation and intraoperative MRI provided useful information for performing tailored and optimized surgery. Complete resection was achieved in 55 of 79 (69.6%) glioma patients and 20 of 55 (36.4%) control subjects, with average resection rates of 95.2% ± 8.5% and 84.9% ± 15.7%, respectively. Both the complete resection rate and average extent of resection differed significantly between the 2 groups (P < 0.01). Postoperatively, the rate of preservation of neural functions (motor, visual field, and language) was lower in controls than in glioma patients at 2 weeks and 3 months (P < 0.01). CONCLUSION Combining virtual and augmented reality based on functional neuronavigation and intraoperative MRI can facilitate resection of gliomas involving eloquent areas.


Medical Science Monitor | 2015

Facial and Cochlear Nerve Complications following Microsurgical Resection of Vestibular Schwannomas in a Series of 221 Cases

Jun Zhang; Bainan Xu; Yuan-zheng Hou; Guochen Sun; Yan Jiang

Background Despite improvements in microsurgical technique and the use of intraoperative electrophysiological monitoring, the potential for facial and cochlear nerve injury remains a possibility in the resection of vestibular schwannomas (VS). We reviewed a series of 221 cases of VS resected via a retrosigmoid approach at our institution from October 2008 to April 2014 and determined the incidence of postoperative facial and cochlear deficits. Material/Methods A total of 221 patients – 105 (47.5%) male and 116 (52.5%) female – with a mean age of 46.1 years (range 29–73 years), with VS ≥3 cm (n=183, 82.8%) and <3 cm (n=38, 17.2%) underwent surgical resection via a retrosigmoid approach and were evaluated for postoperative facial and cochlear nerve deficits. Results Near-total resection (>95% removal) was achieved in 199 cases (90%) and subtotal resection (>90% removal) in 22 cases (10%). At 6 month follow-up, House-Brackmann grades I–III were observed in 183 cases (82.8%), grade IV in 16 cases (7.2%), and grade V in 22 cases (10%). Of the 10 patients that had preoperative functional hearing, 3 (33%) retained hearing postoperatively. Cerebrospinal fluid leakage occurred in 6 patients (2.7%), lower cranial nerve palsies in 9 patients (4.1%), and intracranial hematomas 3 cases (1.4%). Conclusions The observed incidence of persistent postoperative nerve deficits is very low. Meticulous microsurgical dissection of and around the facial and cochlear nerves with the aid of intraoperative electrophysiological nerve monitoring in the retrosigmoid approach allows for near-total resection of medium and large VS with the possibility of preservation of facial and cochlear nerve function.


British Journal of Neurosurgery | 2018

Intraoperative visualisation of functional structures facilitates safe frameless stereotactic biopsy in the motor eloquent regions of the brain

Jiashu Zhang; Ling Qu; Qun Wang; Wei Jin; Yuan-zheng Hou; Guochen Sun; Fangye Li; Xinguang Yu; Ban-Nan Xu; Xiaolei Chen

Abstract Background: For stereotactic brain biopsy involving motor eloquent regions, the surgical objective is to enhance diagnostic yield and preserve neurological function. To achieve this aim, we implemented functional neuro-navigation and intraoperative magnetic resonance imaging (iMRI) into the biopsy procedure. The impact of this integrated technique on the surgical outcome and postoperative neurological function was investigated and evaluated. Method: Thirty nine patients with lesions involving motor eloquent structures underwent frameless stereotactic biopsy assisted by functional neuro-navigation and iMRI. Intraoperative visualisation was realised by integrating anatomical and functional information into a navigation framework to improve biopsy trajectories and preserve eloquent structures. iMRI was conducted to guarantee the biopsy accuracy and detect intraoperative complications. The perioperative change of motor function and biopsy error before and after iMRI were recorded, and the role of functional information in trajectory selection and the relationship between the distance from sampling site to nearby eloquent structures and the neurological deterioration were further analyzed. Results: Functional neuro-navigation helped modify the original trajectories and sampling sites in 35.90% (16/39) of cases to avoid the damage of eloquent structures. Even though all the lesions were high-risk of causing neurological deficits, no significant difference was found between preoperative and postoperative muscle strength. After data analysis, 3mm was supposed to be the safe distance for avoiding transient neurological deterioration. During surgery, the use of iMRI significantly reduced the biopsy errors (p = 0.042) and potentially increased the diagnostic yield from 84.62% (33/39) to 94.87% (37/39). Moreover, iMRI detected intraoperative haemorrhage in 5.13% (2/39) of patients, all of them benefited from the intraoperative strategies based on iMRI findings. Conclusions: Intraoperative visualisation of functional structures could be a feasible, safe and effective technique. Combined with intraoperative high-field MRI, it contributed to enhance the biopsy accuracy and lower neurological complications in stereotactic brain biopsy involving motor eloquent areas.


Brain and behavior | 2018

A low-cost multimodal head-mounted display system for neuroendoscopic surgery

Xinghua Xu; Yi Zheng; Shujing Yao; Guochen Sun; Bainan Xu; Xiaolei Chen

With rapid advances in technology, wearable devices as head‐mounted display (HMD) have been adopted for various uses in medical science, ranging from simply aiding in fitness to assisting surgery. We aimed to investigate the feasibility and practicability of a low‐cost multimodal HMD system in neuroendoscopic surgery.

Collaboration


Dive into the Guochen Sun's collaboration.

Top Co-Authors

Avatar

Xiaolei Chen

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Bainan Xu

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Jiashu Zhang

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Xinguang Yu

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Xinghua Xu

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Fangye Li

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Jun Zhang

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Xuan Zheng

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Dingbiao Zhou

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Hui Zhang

Chinese PLA General Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge