Guofa Dong
City University of Hong Kong
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guofa Dong.
Journal of Materials Chemistry | 2015
Guofa Dong; Ming Fang; Hongtao Wang; SenPo Yip; Ho-Yuen Cheung; Fengyun Wang; Chun-Yuen Wong; Sai Tak Chu; Johnny C. Ho
Recently, carbon nanomaterials with outstanding electrocatalytic performance for the hydrogen evolution reaction (HER) after electrochemical activation have been reported; however, the exact activation mechanism is still under extensive debate. In this study, to better understand the activation, graphite rods and carbon nanohorns, two typical carbon materials in different scales, were electrochemically activated and their catalytic performances in HER were systematically studied, which showed that the HER performance was greatly affected by the counter electrode employed for the activation. An efficient activation was achieved when a platinum wire was used as the counter electrode; simultaneously, Pt transfer from the anode to the cathode was also observed. These results suggest that the improved HER performance was mainly caused by the Pt transfer, rather than the activation of the carbon materials themselves. More importantly, our study implied that the Pt dissolution, although widely ignored, should be taken into consideration during electrochemical tests when Pt metal is utilized as the counter electrode.
Advanced Materials | 2013
Ning Han; Fengyun Wang; Jared J. Hou; Sen Po Yip; Hao Lin; Fei Xiu; Ming Fang; Zai-xing Yang; Xiaoling Shi; Guofa Dong; Tak Fu Hung; Johnny C. Ho
A metal-cluster-decoration approach is utilized to tailor electronic transport properties (e.g., threshold voltage) of III-V NWFETs through the modulation of free carriers in the NW channel via the deposition of different metal clusters with different work function. The versatility of this technique has been demonstrated through the fabrication of high-mobility enhancement-mode InAs NW parallel FETs as well as the construction of low-power InAs NW inverters.
Nanotechnology | 2013
Fengyun Wang; SenPo Yip; Ning Han; KitWa Fok; Hao Lin; Jared J. Hou; Guofa Dong; TakFu Hung; K. S. Chan; Johnny C. Ho
In this work, we present a study of the surface roughness dependent electron mobility in InAs nanowires grown by the nickel-catalyzed chemical vapor deposition method. These nanowires have good crystallinity, well-controlled surface morphology without any surface coating or tapering and an excellent peak field-effect mobility up to 15,000 cm(2) V(-1) s(-1) when configured into back-gated field-effect nanowire transistors. Detailed electrical characterizations reveal that the electron mobility degrades monotonically with increasing surface roughness and diameter scaling, while low-temperature measurements further decouple the effects of surface/interface traps and phonon scattering, highlighting the dominant impact of surface roughness scattering on the electron mobility for miniaturized and surface disordered nanowires. All these factors suggest that careful consideration of nanowire geometries and surface condition is required for designing devices with optimal performance.
ACS Nano | 2015
Zai-xing Yang; SenPo Yip; Dapan Li; Ning Han; Guofa Dong; Xiaoguang Liang; Lei Shu; Tak Fu Hung; Xiaoliang Mo; Johnny C. Ho
In recent years, high-mobility GaSb nanowires have received tremendous attention for high-performance p-type transistors; however, due to the difficulty in achieving thin and uniform nanowires (NWs), there is limited report until now addressing their diameter-dependent properties and their hole mobility limit in this important one-dimensional material system, where all these are essential information for the deployment of GaSb NWs in various applications. Here, by employing the newly developed surfactant-assisted chemical vapor deposition, high-quality and uniform GaSb NWs with controllable diameters, spanning from 16 to 70 nm, are successfully prepared, enabling the direct assessment of their growth orientation and hole mobility as a function of diameter while elucidating the role of sulfur surfactant and the interplay between surface and interface energies of NWs on their electrical properties. The sulfur passivation is found to efficiently stabilize the high-energy NW sidewalls of (111) and (311) in order to yield the thin NWs (i.e., <40 nm in diameters) with the dominant growth orientations of ⟨211⟩ and ⟨110⟩, whereas the thick NWs (i.e., >40 nm in diameters) would grow along the most energy-favorable close-packed planes with the orientation of ⟨111⟩, supported by the approximate atomic models. Importantly, through the reliable control of sulfur passivation, growth orientation and surface roughness, GaSb NWs with the peak hole mobility of ∼400 cm(2)V s(-1) for the diameter of 48 nm, approaching the theoretical limit under the hole concentration of ∼2.2 × 10(18) cm(-3), can be achieved for the first time. All these indicate their promising potency for utilizations in different technological domains.
ACS Applied Materials & Interfaces | 2015
Ning Han; Zai-xing Yang; Fengyun Wang; Guofa Dong; SenPo Yip; Xiaoguang Liang; Tak Fu Hung; Yunfa Chen; Johnny C. Ho
Among many available photovoltaic technologies at present, gallium arsenide (GaAs) is one of the recognized leaders for performance and reliability; however, it is still a great challenge to achieve cost-effective GaAs solar cells for smart systems such as transparent and flexible photovoltaics. In this study, highly crystalline long GaAs nanowires (NWs) with minimal crystal defects are synthesized economically by chemical vapor deposition and configured into novel Schottky photovoltaic structures by simply using asymmetric Au-Al contacts. Without any doping profiles such as p-n junction and complicated coaxial junction structures, the single NW Schottky device shows a record high apparent energy conversion efficiency of 16% under air mass 1.5 global illumination by normalizing to the projection area of the NW. The corresponding photovoltaic output can be further enhanced by connecting individual cells in series and in parallel as well as by fabricating NW array solar cells via contact printing showing an overall efficiency of 1.6%. Importantly, these Schottky cells can be easily integrated on the glass and plastic substrates for transparent and flexible photovoltaics, which explicitly demonstrate the outstanding versatility and promising perspective of these GaAs NW Schottky photovoltaics for next-generation smart solar energy harvesting devices.
Journal of Nanomaterials | 2014
Ming Fang; Ning Han; Fengyun Wang; Zai-xing Yang; SenPo Yip; Guofa Dong; Jared J. Hou; Yu-Lun Chueh; Johnny C. Ho
III–V semiconductor nanowire (NW) materials possess a combination of fascinating properties, including their tunable direct bandgap, high carrier mobility, excellent mechanical flexibility, and extraordinarily large surface-to-volume ratio, making them superior candidates for next generation electronics, photonics, and sensors, even possibly on flexible substrates. Understanding the synthesis, property manipulation, and device integration of these III–V NW materials is therefore crucial for their practical implementations. In this review, we present a comprehensive overview of the recent development in III–V NWs with the focus on their cost-effective synthesis, corresponding property control, and the relevant low-operating-power device applications. We will first introduce the synthesis methods and growth mechanisms of III–V NWs, emphasizing the low-cost solid-source chemical vapor deposition (SSCVD) technique, and then discuss the physical properties of III–V NWs with special attention on their dependences on several typical factors including the choice of catalysts, NW diameters, surface roughness, and surface decorations. After that, we present several different examples in the area of high-performance photovoltaics and low-power electronic circuit prototypes to further demonstrate the potential applications of these NW materials. Towards the end, we also make some remarks on the progress made and challenges remaining in the III–V NW research field.
ACS Applied Materials & Interfaces | 2015
Ning Han; Zai-xing Yang; Fengyun Wang; SenPo Yip; Guofa Dong; Xiaoguang Liang; TakFu Hung; Yunfa Chen; Johnny C. Ho
Nowadays, III-V compound semiconductor nanowires (NWs) have attracted extensive research interest because of their high carrier mobility favorable for next-generation electronics. However, it is still a great challenge for the large-scale synthesis of III-V NWs with well-controlled and uniform morphology as well as reliable electrical properties, especially on the low-cost noncrystalline substrates for practical utilization. In this study, high-density GaAs NWs with lengths >10 μm and uniform diameter distribution (relative standard deviation σ ∼ 20%) have been successfully prepared by annealing the Au catalyst films (4-12 nm) in air right before GaAs NW growth, which is in distinct contrast to the ones of 2-3 μm length and widely distributed of σ ∼ 20-60% of the conventional NWs grown by the H2-annealed film. This air-annealing process is found to stabilize the Au nanoparticle seeds and to minimize Ostwald ripening during NW growth. Importantly, the obtained GaAs NWs exhibit uniform p-type conductivity when fabricated into NW-arrayed thin-film field-effect transistors (FETs). Moreover, they can be integrated with an n-type InP NW FET into effective complementary metal oxide semiconductor inverters, capable of working at low voltages of 0.5-1.5 V. All of these results explicitly demonstrate the promise of these NW morphology and electrical property controls through the catalyst engineering for next-generation electronics.
Journal of Materials Chemistry C | 2014
Xiaoling Shi; Guofa Dong; Ming Fang; Fengyun Wang; Hao Lin; Wen-Chun Yen; K. S. Chan; Yu-Lun Chueh; Johnny C. Ho
Selective and reliable n-type doping as well as tuning the Dirac point of graphene are important for the realization of high-performance complementary circuits. In this work, we present a simple but effective technique to left shift the Dirac point of graphene transistors to induce n-type doping via thermal decoration of Al nanoparticles. The decorated discrete nanoparticles are uniformly distributed on the top of the graphene channel surface with consistent size and shape. Detailed electrical measurements reveal that the decoration can efficiently shift the Dirac point of graphene towards negative gate voltages along with the improved on/off current ratio and excellent air-stability. All these further indicate the technological potency of this doping technique for the fabrication of future CMOS graphene electronics.
Journal of Materials Chemistry | 2017
Guofa Dong; Ming Fang; Jianshuo Zhang; Renjie Wei; Lei Shu; Xiaoguang Liang; Sen Po Yip; Fengyun Wang; Lunhui Guan; Zijian Zheng; Johnny C. Ho
Since the oxygen evolution reaction (OER) is a key step in the process of water splitting, efficient catalysts are inevitably required to overcome energy barriers at the electrode–electrolyte interface in order to improve its reaction efficiency; as a result, developing highly active and low-cost catalysts is of the great importance. Herein, we report an extremely simple method to prepare OER catalysts, which exhibit excellent activity and superior OER stability in alkaline conditions. The OER catalysts are composed of mixed Ni–Fe oxides or hydroxides that can be easily obtained by in situ reactive dip-coating of nickel foams in a Fe3+-containing aqueous solution. In specific, the as-prepared composites can give an overpotential value of 210 mV under a current density of 10 mA cm−2 in 1 M KOH aqueous solution and there is not any obvious degradation in OER activity even after 50 hours chronopotentiometry measurement at a current density of 50 mA cm−2. More importantly, the samples prepared by this method also illustrate the good uniformity, in which this particular synthesis scheme would hold the great potency for practical fabrication of high-performance and low-cost catalysts in the large-scale industrialization.
Scientific Reports | 2016
Xiaoguang Liang; Lei Shu; Hao Lin; Ming Fang; Heng Zhang; Guofa Dong; SenPo Yip; Fei Xiu; Johnny C. Ho
Although three-dimensional nanostructured solar cells have attracted extensive research attention due to their superior broadband and omnidirectional light-harvesting properties, majority of them are still suffered from complicated fabrication processes as well as disappointed photovoltaic performances. Here, we employed our newly-developed, low-cost and simple wet anisotropic etching to fabricate hierarchical silicon nanostructured arrays with different solar cell contact design, followed by systematic investigations of their photovoltaic characteristics. Specifically, nano-arrays with the tapered tips (e.g. inverted nanopencils) are found to enable the more conformal top electrode deposition directly onto the nanostructures for better series and shunt conductance, but its insufficient film coverage at the basal plane would still restrict the charge carrier collection. In contrast, the low-platform contact design facilitates a substantial photovoltaic device performance enhancement of ~24%, as compared to the one of conventional top electrode design, due to the shortened current path and improved lateral conductance for the minimized carrier recombination and series resistance. This enhanced contact structure can not only maintain excellent photon-trapping behaviors of nanostructures, but also help to eliminate adverse impacts of these tapered nano-morphological features on the contact resistance, providing further insight into design consideration in optimizing the contact geometry for high-performance nanostructured photovoltaic devices.