Guoheng Xu
Peking University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guoheng Xu.
Human Molecular Genetics | 2011
Xin Cui; Yuhui Wang; Yin Tang; Yixiao Liu; Liping Zhao; Jingna Deng; Guoheng Xu; Xin-Gui Peng; Shenghong Ju; George Liu; Hongyuan Yang
Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) is an autosomal recessive disorder characterized by an almost complete loss of adipose tissue, insulin resistance and fatty liver. Here, we create the first murine model of BSCL2 by targeted disruption of seipin, the causative gene for BSCL2. Compared with their wild-type littermates, the seipin(-/-) mice are viable and of normal weight but display significantly reduced adipose tissue mass, hepatic steatosis, glucose intolerance and hyperinsulinemia. The levels of leptin and adiponectin were both significantly decreased in seipin(-/-) mice, so were non-esterified fatty acids upon fasting. Surprisingly, however, hypertriglyceridemia which is common in human BSCL, was not observed in seipin(-/-) mice. Our findings suggest a possible tissue-autonomous role of seipin in liver lipid storage. The availability of the seipin(-/-) mice should help elucidate the molecular function of seipin and lead to a better understanding of the many metabolic consequences of human BSCL2.
Diabetes | 2008
Yin Li; Changtao Jiang; Guoheng Xu; Nanping Wang; Yi Zhu; Chaoshu Tang; Xian Wang
OBJECTIVE—Homocysteine (Hcy) is epidemiologically related to insulin resistance, which has been speculated to be a low-grade systemic inflammatory condition. Resistin acts as a critical mediator of insulin resistance associated with inflammatory conditions. We aimed to determine whether Hcy can induce insulin resistance by directly regulating the expression and secretion of resistin from adipose tissue. RESEARCH DESIGN AND METHODS—The effect of Hcy on the expression and secretion of resistin and insulin resistance was investigated using primary rat adipocytes and mice with hyperhomocysteinemia (HHcy). RESULTS—Hcy impaired glucose transport and, particularly, the insulin signaling pathway as shown by decreased insulin-stimulated tyrosine phosphorylation of insulin receptor and insulin receptor substrate (IRS)-1, increased serine phosphorylation of IRS-1, and inhibited Akt phosphorylation both in vitro and in vivo, and these impairments were accompanied by an increase in resistin expression. Compared with normal mice, HHcy mice with a clinically relevant level of plasma Hcy (19 μmol/l) showed significantly increased resistin production from adipose tissue (33.38 ± 3.08 vs. 19.27 ± 1.71 ng/ml, P < 0.01). Hcy (300–1000 μmol/l) also increased mRNA expression of resistin in primary rat adipocytes in a time- and concentration-dependent manner, with maximal induction at 24 h of approximately fourfold with 1,000 μmol/l. In addition, Hcy-induced resistin expression attenuated by treatment with reactive oxygen species (ROS) scavengers, protein kinase C (PKC), and nuclear factor (NF)-κB inhibitors implies a role in the process for ROS, PKC, and NF-κB. CONCLUSIONS—HHcy may promote insulin resistance through the induction of resistin expression and secretion from adipocytes via the activation of the ROS-PKC–NF-κB pathway.
Journal of Biological Chemistry | 2013
Yang Li; Heng Zhang; Changtao Jiang; Ming-Jiang Xu; Yanli Pang; Juan Feng; Xinxin Xiang; Wei Kong; Guoheng Xu; Yin Li; Xian Wang
Background: ER stress plays a critical role in the pathogenesis of type 2 diabetes, and HHcy induces insulin resistance in adipose tissue. Results: Hcy induced ER stress markers in adipose tissue both in vivo and in vitro. Conclusion: HHcy inhibited adipose insulin sensitivity by inducing ER stress, promoting proinflammatory cytokine production, and facilitating macrophage infiltration. Significance: This work reveals a new mechanism of HHcy-induced insulin resistance. Type 2 diabetes is a chronic inflammatory metabolic disease, the key point being insulin resistance. Endoplasmic reticulum (ER) stress plays a critical role in the pathogenesis of type 2 diabetes. Previously, we found that hyperhomocysteinemia (HHcy) induced insulin resistance in adipose tissue. Here, we hypothesized that HHcy induces ER stress, which in turn promotes insulin resistance. In the present study, the direct effect of Hcy on adipose ER stress was investigated by the use of primary rat adipocytes in vitro and mice with HHcy in vivo. The mechanism and the effect of G protein-coupled receptor 120 (GPR120) were also investigated. We found that phosphorylation or expression of variant ER stress markers was elevated in adipose tissue of HHcy mice. HHcy activated c-Jun N-terminal kinase (JNK), the downstream signal of ER stress in adipose tissue, and activated JNK participated in insulin resistance by inhibiting Akt activation. Furthermore, JNK activated c-Jun and p65, which in turn triggered the transcription of proinflammatory cytokines. Both in vivo and in vitro assays revealed that Hcy-promoted macrophage infiltration aggravated ER stress in adipose tissue. Chemical chaperones PBA and TUDCA could reverse Hcy-induced inflammation and restore insulin-stimulated glucose uptake and Akt activation. Activation of GPR120 reversed Hcy-induced JNK activation and prevented inflammation but not ER stress. Therefore, HHcy inhibited insulin sensitivity in adipose tissue by inducing ER stress, activating JNK to promote proinflammatory cytokine production and facilitating macrophage infiltration. These findings reveal a new mechanism of HHcy in the pathogenesis of insulin resistance.
Journal of Biological Chemistry | 2012
Jingna Deng; Shangxin Liu; Liangqiang Zou; Chong Xu; Bin Geng; Guoheng Xu
In obesity and diabetes, adipocytes show significant endoplasmic reticulum (ER) stress, which triggers a series of responses. This study aimed to investigate the lipolysis response to ER stress in rat adipocytes. Thapsigargin, tunicamycin, and brefeldin A, which induce ER stress through different pathways, efficiently activated a time-dependent lipolytic reaction. The lipolytic effect of ER stress occurred with elevated cAMP production and protein kinase A (PKA) activity. Inhibition of PKA reduced PKA phosphosubstrates and attenuated the lipolysis. Although both ERK1/2 and JNK are activated during ER stress, lipolysis is partially suppressed by inhibiting ERK1/2 but not JNK and p38 MAPK and PKC. Thus, ER stress induces lipolysis by activating cAMP/PKA and ERK1/2. In the downstream lipolytic cascade, phosphorylation of lipid droplet-associated protein perilipin was significantly promoted during ER stress but attenuated on PKA inhibition. Furthermore, ER stress stimuli did not alter the levels of hormone-sensitive lipase and adipose triglyceride lipase but caused Ser-563 and Ser-660 phosphorylation of hormone-sensitive lipase and moderately elevated its translocation from the cytosol to lipid droplets. Accompanying these changes, total activity of cellular lipases was promoted to confer the lipolysis. These findings suggest a novel pathway of the lipolysis response to ER stress in adipocytes. This lipolytic activation may be an adaptive response that regulates energy homeostasis but with sustained ER stress challenge could contribute to lipotoxicity, dyslipidemia, and insulin resistance because of persistently accelerated free fatty acid efflux from adipocytes to the bloodstream and other tissues.Background: Dysregulation of endoplasmic reticulum homeostasis elicits various stress responses. Results: Endoplasmic reticulum stress activates lipolytic cascade in rat adipocytes. Conclusion: The lipolysis response to endoplasmic reticulum stress is mediated via cAMP/PKA and ERK1/2 signaling. Significance: Increased lipolysis promotes fatty acid efflux from adipocytes to other tissues and thus may contribute to lipotoxicity and insulin resistance in obesity and diabetes. In obesity and diabetes, adipocytes show significant endoplasmic reticulum (ER) stress, which triggers a series of responses. This study aimed to investigate the lipolysis response to ER stress in rat adipocytes. Thapsigargin, tunicamycin, and brefeldin A, which induce ER stress through different pathways, efficiently activated a time-dependent lipolytic reaction. The lipolytic effect of ER stress occurred with elevated cAMP production and protein kinase A (PKA) activity. Inhibition of PKA reduced PKA phosphosubstrates and attenuated the lipolysis. Although both ERK1/2 and JNK are activated during ER stress, lipolysis is partially suppressed by inhibiting ERK1/2 but not JNK and p38 MAPK and PKC. Thus, ER stress induces lipolysis by activating cAMP/PKA and ERK1/2. In the downstream lipolytic cascade, phosphorylation of lipid droplet-associated protein perilipin was significantly promoted during ER stress but attenuated on PKA inhibition. Furthermore, ER stress stimuli did not alter the levels of hormone-sensitive lipase and adipose triglyceride lipase but caused Ser-563 and Ser-660 phosphorylation of hormone-sensitive lipase and moderately elevated its translocation from the cytosol to lipid droplets. Accompanying these changes, total activity of cellular lipases was promoted to confer the lipolysis. These findings suggest a novel pathway of the lipolysis response to ER stress in adipocytes. This lipolytic activation may be an adaptive response that regulates energy homeostasis but with sustained ER stress challenge could contribute to lipotoxicity, dyslipidemia, and insulin resistance because of persistently accelerated free fatty acid efflux from adipocytes to the bloodstream and other tissues.
Diabetes | 2014
Lu Liu; Qingqing Jiang; Xuhong Wang; Yuxi Zhang; Ruby C.Y. Lin; Sin Man Lam; Guanghou Shui; Linkang Zhou; Peng Li; Yuhui Wang; Xin Cui; Mingming Gao; Ling Zhang; Ying Lv; Guoheng Xu; George Liu; Dong Zhao; Hongyuan Yang
Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) is the most severe form of human lipodystrophy, characterized by an almost complete loss of adipose tissue and severe insulin resistance. BSCL2 is caused by loss-of-function mutations in the BSCL2/SEIPIN gene, which is upregulated during adipogenesis and abundantly expressed in the adipose tissue. The physiological function of SEIPIN in mature adipocytes, however, remains to be elucidated. Here, we generated adipose-specific Seipin knockout (ASKO) mice, which exhibit adipocyte hypertrophy with enlarged lipid droplets, reduced lipolysis, adipose tissue inflammation, progressive loss of white and brown adipose tissue, insulin resistance, and hepatic steatosis. Lipidomic and microarray analyses revealed accumulation/imbalance of lipid species, including ceramides, in ASKO adipose tissue as well as increased endoplasmic reticulum stress. Interestingly, the ASKO mice almost completely phenocopy the fat-specific peroxisome proliferator–activated receptor-γ (Pparγ) knockout (FKO-γ) mice. Rosiglitazone treatment significantly improved a number of metabolic parameters of the ASKO mice, including insulin sensitivity. Our results therefore demonstrate a critical role of SEIPIN in maintaining lipid homeostasis and function of adipocytes and reveal an intimate relationship between SEIPIN and PPAR-γ.
American Journal of Physiology-endocrinology and Metabolism | 2012
Xin Cui; Yuhui Wang; Lingjun Meng; Weihua Fei; Jingna Deng; Guoheng Xu; Xin-Gui Peng; Shenghong Ju; Ling Zhang; George Liu; Liping Zhao; Hongyuan Yang
Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) is a recessive disorder characterized by an almost complete loss of adipose tissue, insulin resistance, and fatty liver. BSCL2 is caused by loss-of-function mutations in the BSCL2/seipin gene, which encodes seipin. The essential role for seipin in adipogenesis has recently been established both in vitro and in vivo. However, seipin is highly upregulated at later stages of adipocyte development, and its role in mature adipocytes remains to be elucidated. We therefore generated transgenic mice overexpressing a short isoform of human BSCL2 gene (encoding 398 amino acids) using the adipocyte-specific aP2 promoter. The transgenic mice produced ∼150% more seipin than littermate controls in white adipose tissue. Surprisingly, the increased expression of seipin markedly reduced the mass of white adipose tissue and the size of adipocytes and lipid droplets. This may be due in part to elevated lipolysis rates in the transgenic mice. Moreover, there was a nearly 50% increase in the triacylglycerol content of transgenic liver. These results suggest that seipin promotes the differentiation of preadipocytes but may inhibit lipid storage in mature adipocytes.
Biochimica et Biophysica Acta | 2016
Liangqiang Zou; Weiyi Wang; Shangxin Liu; Xiaojing Zhao; Ying Lyv; Congkuo Du; Xueying Su; Bin Geng; Guoheng Xu
Perilipin-1 (Plin1) coats lipid droplets exclusively in adipocytes and regulates two principle functions of adipose tissue, triglyceride storage and hydrolysis, which are disrupted upon Plin1 deficiency. In the present study, we investigated the alterations in systemic metabolites and hormones, vascular function and adipose function in spontaneous hypertensive mice lacking perilipin-1 (Plin1-/-). Plin1-/- mice developed spontaneous hypertension without obvious alterations in systemic metabolites and hormones. Plin1 expressed only in adipose cells but not in vascular cells, so its ablation would have no direct effect in situ on blood vessels. Instead, Plin1-/- mice showed dysfunctions of perivascular adipose tissue (PVAT), a fat depot that anatomically surrounds systemic arteries and has an anticontractile effect. In Plin1-/- mice, aortic and mesenteric PVAT were reduced in mass and adipocyte derived relaxing factor secretion, but increased in basal lipolysis, angiotensin II secretion, macrophage infiltration and oxidative stress. Such multiple culprits impaired the anticontractile effect of PVAT to promote vasoconstriction of aortic and mesenteric arteries of Plin1-/- mice. Furthermore, arterial vessels of Plin1-/- mice showed increasing angiotensin II receptor type 1, monocyte chemotactic protein-1 and interlukin-6 expression, structural damage of endothelial and smooth muscle cells, along with impaired endothelium-dependent relaxation. Hypertension in Plin1-/- mice might occur as a deleterious consequence of PVAT dysfunction. This finding provides the direct evidence that links dysfunctional PVAT to vascular dysfunction and hypertension, particularly in pathophysiological states. This hypertensive mouse model might mimic and explain the hypertension occurring in patients with adipose tissue dysfunction, particularly with Plin1 mutations.
Diabetes | 2017
Jiangying Kuang; Yuwei Zhang; Qinhui Liu; Jing Shen; Shiyun Pu; Shihai Cheng; Lei Chen; Hong Li; Tong Wu; Rui Li; Yanping Li; Min Zou; Zhiyong Zhang; Wei Jiang; Guoheng Xu; Aijuan Qu; Wen Xie; Jinhan He
Sirt6 is an NAD+-dependent deacetylase that is involved in the control of energy metabolism. However, the tissue-specific function of Sirt6 in the adipose tissue remains unknown. In this study, we showed that fat-specific Sirt6 knockout (FKO) sensitized mice to high-fat diet–induced obesity, which was attributed to adipocyte hypertrophy rather than adipocyte hyperplasia. The adipocyte hypertrophy in FKO mice likely resulted from compromised lipolytic activity as an outcome of decreased expression of adipose triglyceride lipase (ATGL), a key lipolytic enzyme. The suppression of ATGL in FKO mice was accounted for by the increased phosphorylation and acetylation of FoxO1, which compromises the transcriptional activity of this positive regulator of ATGL. Fat-specific Sirt6 KO also increased inflammation in the adipose tissue, which may have contributed to insulin resistance in high-fat diet–fed FKO mice. We also observed that in obese patients, the expression of Sirt6 expression is reduced, which is associated with a reduction of ATGL expression. Our results suggest Sirt6 as an attractive therapeutic target for treating obesity and obesity-related metabolic disorders.
PLOS ONE | 2015
Xiaojing Zhao; Mingming Gao; Jinhan He; Liangqiang Zou; Ying Lyu; Ling Zhang; Bin Geng; George Liu; Guoheng Xu
Aims The objective of this study is to determine the role of perilipin 1 (Plin1) in whole body or bone marrow-derived cells on atherogenesis. Methods and Results Accumulated evidence have indicated the role of Plin1 in atherosclerosis, however, these findings are controversial. In this study, we showed that Plin1 was assembled and colocalized with CD68 in macrophages in atherosclerotic plaques of ApoE-/- mice. We further found 39% reduction of plaque size in the aortic roots of Plin1 and ApoE double knockout (Plin1-/-ApoE-/-) females compared with ApoE-/- female littermates. In order to verify whether this reduction was macrophage-specific, the bone marrow cells from wild-type or Plin1 deficient mice (Plin1-/-) were transplanted into LDL receptor deficient mice (LDLR-/-). Mice receiving Plin1-/- bone marrow cells showed also 49% reduction in aortic atherosclerotic lesions compared with LDLR-/- mice received wild-type bone marrow cells. In vitro experiments showed that Plin1-/- macrophages had decreased protein expression of CD36 translocase and an enhanced cholesterol ester hydrolysis upon aggregated-LDL loading, with unaltered expression of many other regulators of cholesterol metabolism, such as cellular lipases, and Plin2 and 3. Given the fundamental role of Plin1 in protecting LD lipids from lipase hydrolysis, it is reasonably speculated that the assembly of Plin1 in microphages might function to reduce lipolysis and hence increase lipid retention in ApoE-/- plaques, but this pro-atherosclerotic property would be abrogated on inactivation of Plin1. Conclusion Plin1 deficiency in bone marrow-derived cells may be responsible for reduced atherosclerotic lesions in the mice.
Journal of Translational Medicine | 2018
Changting Cui; Chuanbo Huang; Kejia Liu; Guoheng Xu; Jichun Yang; Yong Zhou; Yingmei Feng; Georgios Kararigas; Bin Geng; Qinghua Cui
BackgroundMajor differences exist between men and women in both physiology and pathophysiology. Dissecting the underlying processes and contributing mechanisms of sex differences in health and disease represents a crucial step towards precision medicine. Considering the significant differences between men and women in the response to pharmacotherapies, our aim was to develop an in silico model able to predict sex-specific drug responses in a large-scale.MethodsFor this purpose, we focused on cardiovascular effects because of their high morbidity and mortality. Our model predicted several drugs (including acebutolol and tacrine) with significant differences in the heart between men and women. To validate the sex-specific drug responses identified by our model, acebutolol was selected to lower blood pressure in spontaneous hypertensive rats (SHR), tacrine was used to assess cardiac injury in mice and metformin as control for a non-sex-specific response.ResultsAs our model predicted, acebutolol exhibited a stronger decrease in heart rate and blood pressure in female than male SHRs. Tacrine lowered heart rate in male but not in female mice, induced higher plasma cTNI level and increased cardiac superoxide (DHE staining) generation in female than male mice, indicating stronger cardiac toxicity in female than male mice. To validate our model in humans, we employed two Chinese cohorts, which showed that among patients taking a beta-receptor blocker (metoprolol), women reached significantly lower diastolic blood pressure than men.ConclusionsWe conclude that our in silico model could be translated into clinical practice to predict sex-specific drug responses, thereby contributing towards a more appropriate medical care for both men and women.