Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guojia Fang is active.

Publication


Featured researches published by Guojia Fang.


Journal of the American Chemical Society | 2015

Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells

Guojia Fang; Qin Liu; Liangbin Xiong; Pingli Qin; Hong Tao; Jing Wang; Hongwei Lei; Borui Li; Jiawei Wan; Guang Yang; Yanfa Yan

Lead halide perovskite solar cells with the high efficiencies typically use high-temperature processed TiO2 as the electron transporting layers (ETLs). Here, we demonstrate that low-temperature solution-processed nanocrystalline SnO2 can be an excellent alternative ETL material for efficient perovskite solar cells. Our best-performing planar cell using such a SnO2 ETL has achieved an average efficiency of 16.02%, obtained from efficiencies measured from both reverse and forward voltage scans. The outstanding performance of SnO2 ETLs is attributed to the excellent properties of nanocrystalline SnO2 films, such as good antireflection, suitable band edge positions, and high electron mobility. The simple low-temperature process is compatible with the roll-to-roll manufacturing of low-cost perovskite solar cells on flexible substrates.


Nature Communications | 2015

Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells

Guojia Fang; Jiawei Wan; Hong Tao; Qin Liu; Liangbin Xiong; Pingli Qin; Jing Wang; Hongwei Lei; Guang Yang; Minchao Qin; Xingzhong Zhao; Yanfa Yan

Efficient lead halide perovskite solar cells use hole-blocking layers to help collection of photogenerated electrons and to achieve high open-circuit voltages. Here, we report the realization of efficient perovskite solar cells grown directly on fluorine-doped tin oxide-coated substrates without using any hole-blocking layers. With ultraviolet-ozone treatment of the substrates, a planar Au/hole-transporting material/CH₃NH₃PbI₃-xClx/substrate cell processed by a solution method has achieved a power conversion efficiency of over 14% and an open-circuit voltage of 1.06 V measured under reverse voltage scan. The open-circuit voltage is as high as that of our best reference cell with a TiO₂ hole-blocking layer. Besides ultraviolet-ozone treatment, we find that involving Cl in the synthesis is another key for realizing high open-circuit voltage perovskite solar cells without hole-blocking layers. Our results suggest that TiO₂ may not be the ultimate interfacial material for achieving high-performance perovskite solar cells.


Journal of Applied Physics | 2007

Effect of thickness on structural, electrical, and optical properties of ZnO: Al films deposited by pulsed laser deposition

Binzhong Dong; Guojia Fang; Jian-Feng Wang; Wenjie Guan; Xingzhong Zhao

To evaluate the influence of thickness on structural, electrical, and optical properties of ZnO:Al (AZO) films, a set of polycrystalline AZO samples with different thicknesses were deposited by pulsed laser deposition. X-ray diffraction measurement shows that the crystal quality of AZO films was improved with the increase of film thickness. Film surface morphology reveals that a transition of growth mode from vertical growth to lateral growth exists when the films become thicker. The resistivity decrease of AZO films with increase of film thickness owes to the change of carrier concentration for 80% regardless of film thickness in the visible region. The photoluminescence spectra of AZO films can be fitted well by seven emissions, and the emi...


Journal of Materials Chemistry | 2016

Recent progress in electron transport layers for efficient perovskite solar cells

Guang Yang; Hong Tao; Pingli Qin; Guojia Fang

Thin-film photovoltaics based on organic–inorganic hybrid perovskite light absorbers have recently emerged as a promising low-cost solar energy harvesting technology. Over the past several years, we have witnessed a great and unexpected progress in organic–inorganic perovskite solar cells (PSCs). The power conversion efficiency (PCE) increased from 3.8% to 20.1% and exceeded the highest efficiency of conventional dye-sensitized solar cells. Here, the focus is specifically on the recent developments of the electron transport layer (ETL) in PSCs, which is an important part for high performing PSCs. This review briefly discusses the development of the structure of PSCs, and we attempt to give a systematic introduction about the optimization of ETL and its related interfaces for efficient PSCs. Moreover, the introduction of appropriate interfacial materials is another important issue to improve PSC performance by optimizing the interfacial electronic properties between the perovskite layer and the charge-collecting electrode. Besides, some related issues such as device stability and hysteresis behavior are also discussed here.


Advanced Materials | 2016

Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells.

Weijun Ke; Chuanxiao Xiao; Changlei Wang; Bayrammurad Saparov; Hsin-Sheng Duan; Dewei Zhao; Zewen Xiao; Philip Schulz; Steven P. Harvey; Wei-Qiang Liao; Weiwei Meng; Yue Yu; Alexander J. Cimaroli; Chun-Sheng Jiang; Kai Zhu; Mowafak Al-Jassim; Guojia Fang; David B. Mitzi; Yanfa Yan

Lead thiocyanate in the perovskite precursor can increase the grain size of a perovskite thin film and reduce the conductivity of the grain boundaries, leading to perovskite solar cells with reduced hysteresis and enhanced fill factor. A planar perovskite solar cell with grain boundary and interface passivation achieves a steady-state efficiency of 18.42%.


ACS Applied Materials & Interfaces | 2014

Perovskite Solar Cell with an Efficient TiO2 Compact Film

Guojia Fang; Jing Wang; Pingli Qin; Hong Tao; Hongwei Lei; Qin Liu; Xin Dai; Xingzhong Zhao

A perovskite solar cell with a thin TiO2 compact film prepared by thermal oxidation of sputtered Ti film achieved a high efficiency of 15.07%. The thin TiO2 film prepared by thermal oxidation is very dense and inhibits the recombination process at the interface. The optimum thickness of the TiO2 compact film prepared by thermal oxidation is thinner than that prepared by spin-coating method. Also, the TiO2 compact film and the TiO2 porous film can be sintered at the same time. This one-step sintering process leads to a lower dark current density, a lower series resistance, and a higher recombination resistance than those of two-step sintering. Therefore, the perovskite solar cell with the TiO2 compact film prepared by thermal oxidation has a higher short-circuit current density and a higher fill factor.


Advanced Materials | 2014

Pt–Ni Alloy Nanoparticles as Superior Counter Electrodes for Dye‐Sensitized Solar Cells: Experimental and Theoretical Understanding

Jiawei Wan; Guojia Fang; Huajie Yin; Xuefeng Liu; Di Liu; Meiting Zhao; Hong Tao; Zhiyong Tang

Pt-Ni alloy nanoparticles are synthesized and used as counter electrodes in dye-sensitized solar cells (DSSCs) for the first time. A PCE of 9.15% is achieved with the Pt3 Ni counter electrode, displaying an evident improvement compared with the conventional pure Pt (8.33%). The cell stability is also obviously increased with the Pt3 Ni counter electrode.


Applied Physics Letters | 2015

Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer

Jing Wang; Minchao Qin; Hong Tao; Zhao Chen; Jiawei Wan; Pingli Qin; Liangbin Xiong; Hongwei Lei; Huaqing Yu; Guojia Fang

In this letter, we report perovskite solar cells with thin dense Mg-doped TiO2 as hole-blocking layers (HBLs), which outperform cells using TiO2 HBLs in several ways: higher open-circuit voltage (Voc) (1.08 V), power conversion efficiency (12.28%), short-circuit current, and fill factor. These properties improvements are attributed to the better properties of Mg-modulated TiO2 as compared to TiO2 such as better optical transmission properties, upshifted conduction band minimum (CBM) and downshifted valence band maximum (VBM), better hole-blocking effect, and higher electron life time. The higher-lying CBM due to the modulation with wider band gap MgO and the formation of magnesium oxide and magnesium hydroxides together resulted in an increment of Voc. In addition, the Mg-modulated TiO2 with lower VBM played a better role in the hole-blocking. The HBL with modulated band position provided better electron transport and hole blocking effects within the device.


Journal of Applied Physics | 2008

Microstructure, electrical and magnetic properties of Ce-doped BiFeO3 thin films

Zuci Quan; Wei Liu; Hao Hu; Sheng Xu; Bobby Sebo; Guojia Fang; Meiya Li; Xingzhong Zhao

Bi1−xCexFeO3 (x=0, 0.05, 0.1, 0.15, and 0.20) (BCFO) thin films were deposited on Pt/TiN/Si3N4/Si and fluorine-doped SnO2 glass substrates by sol-gel technique, respectively. The effect of Ce doping on the microstructure, electrical and magnetic properties of BCFO films was studied. Compared to counterparts of BiFeO3 (BFO) film, the fitted Bi 4f7/2, Bi 4f5/2, Fe 2p3/2, Fe 2p1/2, and O 1s peaks for Bi0.8Ce0.2FeO3 film shift toward higher binding energy regions by amounts of 0.33, 0.29, 0.43, 0.58, and 0.49 eV, respectively. Raman redshifts of 2–4 cm−1 and shorter phonon lifetimes for the Bi0.8Ce0.2FeO3 film might be related to anharmonic interactions among Bi–O, Ce–O, (Bi, Ce)–O, and Fe–O bonds in the distorted oxygen octahedron. Compared to the pure counterparts, the dielectric and ferroelectric properties of the Bi0.8Ce0.2FeO3 film are improved due to the decreased oxygen vacancies by the stabilized oxygen octahedron. Current density values for the BFO and Bi0.8Ce0.2FeO3 film capacitors are 9.89×10−4 and...


ACS Applied Materials & Interfaces | 2014

In Situ Synthesis of NiS Nanowall Networks on Ni Foam as a TCO-Free Counter Electrode for Dye-Sensitized Solar Cells

Guojia Fang; Hong Tao; Pingli Qin; Jing Wang; Hongwei Lei; Qin Liu; Xingzhong Zhao

Nickel sulfide (NiS) nanowall networks have been prepared by a novel one-step hydrothermal method on a nickel (Ni) foam substrate. The Ni foam has a high conductivity and porous structure. To our knowledge, the Ni foam is used as a conductive substrate for the dye-sensitized solar cell (DSSC) for the first time. The Ni foam is used as not only the conductive substrate but also the Ni sources of the reaction. The Ni foam supported NiS prepared by this simple hydrothermal method shows high catalytic activity for reduction of triiodide ions. The DSSC with a transparent conductive oxide (TCO)-free NiS counter electrode (CE) was herein developed and showed a higher power conversion efficiency of 8.55% than that with a TCO supported NiS CE (7.47%) and a TCO supported platinum CE (7.99%).

Collaboration


Dive into the Guojia Fang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nishuang Liu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Longyan Yuan

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge