Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guojiang Wu is active.

Publication


Featured researches published by Guojiang Wu.


Nature | 2002

HAR1 mediates systemic regulation of symbiotic organ development

Rieko Nishimura; Masaki Hayashi; Guojiang Wu; Hiroshi Kouchi; Haruko Imaizumi-Anraku; Yasuhiro Murakami; Shinji Kawasaki; Shoichiro Akao; Masayuki Ohmori; Mamoru Nagasawa; Kyuya Harada; Masayoshi Kawaguchi

Symbiotic root nodules are beneficial to leguminous host plants; however, excessive nodulation damages the host because it interferes with the distribution of nutrients in the plant. To keep a steady balance, the nodulation programme is regulated systemically in leguminous hosts. Leguminous mutants that have lost this ability display a hypernodulating phenotype. Through the use of reciprocal and self-grafting studies using Lotus japonicus hypernodulating mutants, har1 (also known as sym78), we show that the shoot genotype is responsible for the negative regulation of nodule development. A map-based cloning strategy revealed that HAR1 encodes a protein with a relative molecular mass of 108,000, which contains 21 leucine-rich repeats, a single transmembrane domain and serine/threonine kinase domains. The har1 mutant phenotype was rescued by transfection of the HAR1 gene. In a comparison of Arabidopsis receptor-like kinases, HAR1 showed the highest level of similarity with CLAVATA1 (CLV1). CLV1 negatively regulates formation of the shoot and floral meristems through cell–cell communication involving the CLV3 peptide. Identification of hypernodulation genes thus indicates that genes in leguminous plants bearing a close resemblance to CLV1 regulate nodule development systemically, by means of organ–organ communication.


Nature Communications | 2014

Cassava genome from a wild ancestor to cultivated varieties

Wenquan Wang; Feng B; Jingfa Xiao; Zhiqiang Xia; Xuefeng Zhou; Li P; Weixiong Zhang; Ying Wang; Birger Lindberg Møller; Peng Zhang; Luo Mc; Xiao G; J. B. Liu; Junhui Yang; Suting Chen; Pablo D. Rabinowicz; Xu Chen; Haiying Zhang; Hernán Ceballos; Lou Q; Zou M; Carvalho Lj; Changying Zeng; Jing Xia; Shixiang Sun; Yun Xin Fu; Huizhong Wang; Cheng Lu; Ruan M; Shuigeng Zhou

Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology.


Frontiers in Plant Science | 2016

Reassessment of the Four Yield-related Genes Gn1a, DEP1, GS3, and IPA1 in Rice Using a CRISPR/Cas9 System

Meiru Li; Xiaoxia Li; Zejiao Zhou; Pingzhi Wu; Maichun Fang; Xiaoping Pan; Qiupeng Lin; Wanbin Luo; Guojiang Wu; Hongqing Li

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated (Cas) systems have been successfully used as efficient tools for genome editing in a variety of species. We used the CRISPR/Cas9 system to mutate the Gn1a (Os01g0197700), DEP1 (Os09g0441900), GS3 (Os03g0407400), and IPA1 (Os08g0509600) genes of rice cultivar Zhonghua 11, genes which have been reported to function as regulators of grain number, panicle architecture, grain size and plant architecture, respectively. Analysis of the phenotypes and frequencies of edited genes in the first generation of transformed plants (T0) showed that the CRISPR/Cas9 system was highly efficient in inducing targeted gene editing, with the desired genes being edited in 42.5% (Gn1a), 67.5% (DEP1), 57.5% (GS3), and 27.5% (IPA1) of the transformed plants. The T2 generation of the gn1a, dep1, and gs3 mutants featured enhanced grain number, dense erect panicles, and larger grain size, respectively. Furthermore, semi-dwarf, and grain with long awn, phenotypes were observed in dep1 and gs3 mutants, respectively. The ipa1 mutants showed two contrasting phenotypes, having either fewer tillers or more tillers, depending on the changes induced in the OsmiR156 target region. In addition, we found that mutants with deletions occurred more frequently than previous reports had indicated and that off-targeting had taken place in highly similar target sequences. These results proved that multiple regulators of important traits can be modified in a single cultivar by CRISPR/Cas9, and thus facilitate the dissection of complex gene regulatory networks in the same genomic background and the stacking of important traits in cultivated varieties.


Botanical Bulletin of Academia Sinica | 2005

Characteristics of Plant Proteinase Inhibitors and Their Applications in Combating Phytophagous Insects

Shu-Guo Fan; Guojiang Wu

Plant proteinase inhibitors (PIs), which play a potent defensive role against predators and pathogens, are natural, defense-related proteins often present in seeds and induced in certain plant tissues by herbivory or wounding. This review describes the main classes of proteinase inhibitors, the distribution and localization, general properties, the main functions, and commercial applications of plant PIs. This paper also introduces the proteinase inhibitor us (PIN 2) and its molecular biology, including transgenic plants expressing proteinase inhibitors against insect, pests, and pathogens, esp. in lettuce (Lactuca sativa L.) and Chinese flowering cabbage (Brassica campestris ssp. parachinensis), which are widely cultivated or distributed in Southeast Asia, especially in South China, including Hong Kong. The morphorlogical and molecular characteristics of PIN 2-rich American black nightshade (Solanum americanum Mill.) was described. In addition, prospects for the application of plant PIs are also discussed.


PLOS ONE | 2012

Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds.

Huawu Jiang; Pingzhi Wu; Sheng Zhang; Chi Song; Yaping Chen; Meiru Li; Yongxia Jia; Xiaohua Fang; Fan Chen; Guojiang Wu

Background Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. Methodology/Principal Findings We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29–41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. Conclusions/Significance The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production.


Tree Physiology | 2009

Cloning and functional characterization of an acyl-acyl carrier protein thioesterase (JcFATB1) from Jatropha curcas

Pingzhi Wu; Jun Li; Qian Wei; Ling Zeng; Yaping Chen; Meiru Li; Huawu Jiang; Guojiang Wu

A full-length cDNA of an acyl-acyl carrier protein (ACP) thioesterase (TE) (EC 3.1.2.14), named JcFATB1, was isolated from the woody oil plant Jatropha curcas L. The deduced amino acid sequence of the cDNA shares about 78% identity with FATB TEs, but only about 33% identity with FATA TEs from other plants. The deduced sequence also contains two essential residues (H(317) and C(352)) for TE catalytic activity and a putative chloroplast transit peptide at the N-terminal. Southern blot analysis revealed that a single copy of JcFATB1 is present in the J. curcas genome, and semi-quantitative PCR analysis showed that JcFATB1 was expressed in all tissues that were examined, most strongly in seeds, in which its expression peaked in late developmental stages. Seed-specific overexpression of the JcFATB1 cDNA in Arabidopsis resulted in increased levels of saturated fatty acids, especially palmitate, and in reduced levels of unsaturated fatty acids. The findings suggest that JcFATB1 from this woody oil plant can function as a saturated acyl-ACP TE and could potentially modify the seed oil of J. curcas to increase its levels of palmitate.


Plant Journal | 2015

Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant

Pingzhi Wu; Changpin Zhou; Shifeng Cheng; Zhenying Wu; Wenjia Lu; Jinli Han; Yanbo Chen; Yan Chen; Peixiang Ni; Ying Wang; Xun Xu; Ying Huang; Chi Song; Zhiwen Wang; Nan Shi; Xudong Zhang; Xiaohua Fang; Qing Yang; Huawu Jiang; Yaping Chen; Meiru Li; Fan Chen; Jun Wang; Guojiang Wu

The family Euphorbiaceae includes some of the most efficient biomass accumulators. Whole genome sequencing and the development of genetic maps of these species are important components in molecular breeding and genetic improvement. Here we report the draft genome of physic nut (Jatropha curcas L.), a biodiesel plant. The assembled genome has a total length of 320.5 Mbp and contains 27,172 putative protein-coding genes. We established a linkage map containing 1208 markers and anchored the genome assembly (81.7%) to this map to produce 11 pseudochromosomes. After gene family clustering, 15,268 families were identified, of which 13,887 existed in the castor bean genome. Analysis of the genome highlighted specific expansion and contraction of a number of gene families during the evolution of this species, including the ribosome-inactivating proteins and oil biosynthesis pathway enzymes. The genomic sequence and linkage map provide a valuable resource not only for fundamental and applied research on physic nut but also for evolutionary and comparative genomics analysis, particularly in the Euphorbiaceae.


Gene | 2013

Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.)

Wangdan Xiong; Xueqin Xu; Lin Zhang; Pingzhi Wu; Yaping Chen; Meiru Li; Huawu Jiang; Guojiang Wu

The WRKY proteins, which contain highly conserved WRKYGQK amino acid sequences and zinc-finger-like motifs, constitute a large family of transcription factors in plants. They participate in diverse physiological and developmental processes. WRKY genes have been identified and characterized in a number of plant species. We identified a total of 58 WRKY genes (JcWRKY) in the genome of the physic nut (Jatropha curcas L.). On the basis of their conserved WRKY domain sequences, all of the JcWRKY proteins could be assigned to one of the previously defined groups, I-III. Phylogenetic analysis of JcWRKY genes with Arabidopsis and rice WRKY genes, and separately with castor bean WRKY genes, revealed no evidence of recent gene duplication in JcWRKY gene family. Analysis of transcript abundance of JcWRKY gene products were tested in different tissues under normal growth condition. In addition, 47 WRKY genes responded to at least one abiotic stress (drought, salinity, phosphate starvation and nitrogen starvation) in individual tissues (leaf, root and/or shoot cortex). Our study provides a useful reference data set as the basis for cloning and functional analysis of physic nut WRKY genes.


Theoretical and Applied Genetics | 2009

Comparison of the starch synthesis genes between maize and rice: copies, chromosome location and expression divergence

Hongbo Yan; Xiaoxue Pan; Huawu Jiang; Guojiang Wu

Gene duplication and divergence are important evolutionary processes. It has been suggested that a whole genome duplication (WGD) event occurred in the Gramineae, predating its divergence, and a second WGD occurred in maize during its evolution. In this study we compared the fate of the genes involved in the core pathway of starch biosynthesis following the ancient and second WGDs in maize and rice. In total, thirty starch synthesis genes were detected in the maize genome, which covered all the starch synthesis gene families encoded by 27 genes in rice. All of these genes, except ZmGBSSIIb and ZmBEIII, are anchored within large-scale synteny blocks of rice and maize chromosomes. Previous findings and our results indicate that two of the current copies of many starch synthesis genes (including AGPL, AGPS, GBSS, SSII, SSIII, and BEII) probably arose from the ancient WGD in the Gramineae and are still present in the maize and rice genome. Furthermore, two copies of at least six genes (AGPS1, SSIIb, SSIIIb, GBSSII, BEI, and ISA3) appear to have been retained in the maize genome after its second WGD, although complete coding regions were only detected among the duplicate sets of AGPS1, SSIIb, and SSIIIb. The expression patterns of the remaining duplicate sets of starch synthesis genes (AGPL1/2, AGPS1/2, SSIIa/b, SSIIIa/b, GBSSI/II, and BEIIa/b) differ in their expression and could be classified into two groups in maize. The first group is mainly expressed in the endosperm, whereas the second is expressed in other organs and the early endosperm development. The four duplicate sets of ZmGBSSII, ZmSSIIb, ZmSSIIIb and AGPS1, which arose from the second WGD diverged in gene structure and/or expression patterns in maize. These results indicated that some duplicated starch synthesis genes were remained, whereas others diverged in gene structure and/or expression pattern in maize. For most of the duplicated genes, one of the copies has disappeared in the maize genome after the WGD and the subsequent “diploidization”.


Tree Physiology | 2011

Overexpression of AtNHX5 improves tolerance to both salt and drought stress in Broussonetia papyrifera (L.) Vent

Meiru Li; Yan Li; Hongqing Li; Guojiang Wu

Paper mulberry (Broussonetia papyrifera L. Vent) is well known for its bark fibers, which are used for making paper, cloth, rope, etc. It was found that, in addition to its well-documented role in the enhancement of plant salt tolerance, overexpression of the Na+/H+ antiporter (AtNHX5) gene in paper mulberry plants showed high drought tolerance. After exposure to water deficiency and salt stress, the wild-type (WT) plants all died, while the AtNHX5-overexpressing plants remained alive under high salt stress, and had a higher survival rate (>66%) under drought stress. Measurements of ion levels indicated that Na+ and K+ contents were all higher in AtNHX5-overexpressing leaves than in WT leaves in high saline conditions. The AtNHX5 plants had higher leaf water content and leaf chlorophyll contents, accumulated more proline and soluble sugars, and had less membrane damage than the WT plants under water deficiency and high saline conditions. Taken together, the results indicate that the AtNHX5 gene could enhance the tolerance of paper mulberry plants to multiple environmental stresses by promoting the accumulation of more effective osmolytes (ions, soluble sugars, proline) to counter the osmotic stress caused by abiotic factors.

Collaboration


Dive into the Guojiang Wu's collaboration.

Top Co-Authors

Avatar

Meiru Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huawu Jiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yaping Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Pingzhi Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongqing Li

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Xiaoping Pan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guohua Ma

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lin Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Sheng Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongbo Yan

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge