Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guojun Dong is active.

Publication


Featured researches published by Guojun Dong.


Nature | 2012

A map of rice genome variation reveals the origin of cultivated rice

Xuehui Huang; Nori Kurata; Xinghua Wei; Zi-Xuan Wang; Ahong Wang; Qiang Zhao; Yan Zhao; K. Liu; Hengyun Lu; Wenjun Li; Yunli Guo; Yiqi Lu; Congcong Zhou; Danlin Fan; Qijun Weng; Chuanrang Zhu; Tao Huang; Lei Zhang; Yongchun Wang; Lei Feng; Hiroyasu Furuumi; Takahiko Kubo; Toshie Miyabayashi; Xiaoping Yuan; Qun Xu; Guojun Dong; Qilin Zhan; Canyang Li; Asao Fujiyama; Atsushi Toyoda

Crop domestications are long-term selection experiments that have greatly advanced human civilization. The domestication of cultivated rice (Oryza sativa L.) ranks as one of the most important developments in history. However, its origins and domestication processes are controversial and have long been debated. Here we generate genome sequences from 446 geographically diverse accessions of the wild rice species Oryza rufipogon, the immediate ancestral progenitor of cultivated rice, and from 1,083 cultivated indica and japonica varieties to construct a comprehensive map of rice genome variation. In the search for signatures of selection, we identify 55 selective sweeps that have occurred during domestication. In-depth analyses of the domestication sweeps and genome-wide patterns reveal that Oryza sativa japonica rice was first domesticated from a specific population of O. rufipogon around the middle area of the Pearl River in southern China, and that Oryza sativa indica rice was subsequently developed from crosses between japonica rice and local wild rice as the initial cultivars spread into South East and South Asia. The domestication-associated traits are analysed through high-resolution genetic mapping. This study provides an important resource for rice breeding and an effective genomics approach for crop domestication research.


Nature Genetics | 2012

Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm

Xuehui Huang; Yan Zhao; Xinghua Wei; Canyang Li; Ahong Wang; Qiang Zhao; Wenjun Li; Yunli Guo; Liuwei Deng; Chuanrang Zhu; Danlin Fan; Yiqi Lu; Qijun Weng; K. Liu; Taoying Zhou; Yufeng Jing; Lizhen Si; Guojun Dong; Tao Huang; Tingting Lu; Qi Feng; Qian Qian; Jiayang Li; Bin Han

A high-density haplotype map recently enabled a genome-wide association study (GWAS) in a population of indica subspecies of Chinese rice landraces. Here we extend this methodology to a larger and more diverse sample of 950 worldwide rice varieties, including the Oryza sativa indica and Oryza sativa japonica subspecies, to perform an additional GWAS. We identified a total of 32 new loci associated with flowering time and with ten grain-related traits, indicating that the larger sample increased the power to detect trait-associated variants using GWAS. To characterize various alleles and complex genetic variation, we developed an analytical framework for haplotype-based de novo assembly of the low-coverage sequencing data in rice. We identified candidate genes for 18 associated loci through detailed annotation. This study shows that the integrated approach of sequence-based GWAS and functional genome annotation has the potential to match complex traits to their causal polymorphisms in rice.


Nature Genetics | 2012

Control of grain size, shape and quality by OsSPL16 in rice

Shaokui Wang; Kun Wu; Qingbo Yuan; Xueying Liu; Zhengbin Liu; Xiaoyan Lin; Ruizhen Zeng; Haitao Zhu; Guojun Dong; Qian Qian; Guiquan Zhang; Xiangdong Fu

Grain size and shape are important components of grain yield and quality and have been under selection since cereals were first domesticated. Here, we show that a quantitative trait locus GW8 is synonymous with OsSPL16, which encodes a protein that is a positive regulator of cell proliferation. Higher expression of this gene promotes cell division and grain filling, with positive consequences for grain width and yield in rice. Conversely, a loss-of-function mutation in Basmati rice is associated with the formation of a more slender grain and better quality of appearance. The correlation between grain size and allelic variation at the GW8 locus suggests that mutations within the promoter region were likely selected in rice breeding programs. We also show that a marker-assisted strategy targeted at elite alleles of GS3 and OsSPL16 underlying grain size and shape can be effectively used to simultaneously improve grain quality and yield.


Plant Molecular Biology | 2009

Dwarf 88, a novel putative esterase gene affecting architecture of rice plant

Zhenyu Gao; Qian Qian; Xiaohui Liu; Meixian Yan; Qi Feng; Guojun Dong; Jian Liu; Bin Han

Rice architecture is an important agronomic trait that affects grain yield. We characterized a tillering dwarf mutant d88 derived from Oryza sativa ssp. japonica cultivar Lansheng treated with EMS. The mutant had excessive shorter tillers and smaller panicles and seeds compared to the wild-type. A reduction in number and size of parenchyma cells around stem marrow cavity as well as a delay in the elongation of parenchyma cells caused slender tillers and dwarfism in the d88 mutant. The D88 gene was isolated via map-based cloning and identified to encode a putative esterase. The gene was expressed in most rice organs, with especially high levels in the vascular tissues. The mutant carried a nucleotide substitution in the first exon of the gene that led to the substitution of arginine for glycine, which presumably disrupted the functionally conserved N-myristoylation domain of the protein. The function of the gene was confirmed by complementation test and antisense analysis. D88, thus, represents a new category of genes that regulates cell growth and organ development and consequently plant architecture. The potential relationship between the tiller formation associated genes and D88 is discussed and future identification of the substrate for D88 may lead to the characterization of new pathways regulating plant development.


Nature Genetics | 2014

Heterotrimeric G proteins regulate nitrogen-use efficiency in rice

Hongying Sun; Qian Qian; Kun Wu; Jijing Luo; Shuansuo Wang; Chengwei Zhang; Yanfei Ma; Qian Liu; Xianzhong Huang; Qingbo Yuan; Ruixi Han; Meng Zhao; Guojun Dong; Longbiao Guo; Xudong Zhu; Zhiheng Gou; Wen Wang; Yuejin Wu; Hong-Xuan Lin; Xiangdong Fu

The drive toward more sustainable agriculture has raised the profile of crop plant nutrient-use efficiency. Here we show that a major rice nitrogen-use efficiency quantitative trait locus (qNGR9) is synonymous with the previously identified gene DEP1 (DENSE AND ERECT PANICLES 1). The different DEP1 alleles confer different nitrogen responses, and genetic diversity analysis suggests that DEP1 has been subjected to artificial selection during Oryza sativa spp. japonica rice domestication. The plants carrying the dominant dep1-1 allele exhibit nitrogen-insensitive vegetative growth coupled with increased nitrogen uptake and assimilation, resulting in improved harvest index and grain yield at moderate levels of nitrogen fertilization. The DEP1 protein interacts in vivo with both the Gα (RGA1) and Gβ (RGB1) subunits, and reduced RGA1 or enhanced RGB1 activity inhibits nitrogen responses. We conclude that the plant G protein complex regulates nitrogen signaling and modulation of heterotrimeric G protein activity provides a strategy for environmentally sustainable increases in rice grain yield.


Theoretical and Applied Genetics | 2011

Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines

Lu Wang; Ahong Wang; Xuehui Huang; Qiang Zhao; Guojun Dong; Qian Qian; Tao Sang; Bin Han

Mapping chromosome regions responsible for quantitative phenotypic variation in recombinant populations provides an effective means to characterize the genetic basis of complex traits. We conducted a quantitative trait loci (QTL) analysis of 150 rice recombinant inbred lines (RILs) derived from a cross between two cultivars, Oryza sativa ssp. indica cv. 93-11 and Oryza sativa ssp. japonica cv. Nipponbare. The RILs were genotyped through next-generation sequencing, which accurately determined the recombination breakpoints and provided a new type of genetic markers, recombination bins, for QTL analysis. We detected 49 QTL with phenotypic effect ranging from 3.2 to 46.0% for 14 agronomics traits. Five QTL of relatively large effect (14.6–46.0%) were located on small genomic regions, where strong candidate genes were found. The analysis using sequencing-based genotyping thus offers a powerful solution to map QTL with high resolution. Moreover, the RILs developed in this study serve as an excellent system for mapping and studying genetic basis of agricultural and biological traits of rice.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Dissecting yield-associated loci in super hybrid rice by resequencing recombinant inbred lines and improving parental genome sequences

Zhenyu Gao; Shancen Zhao; Weiming He; Longbiao Guo; Youlin Peng; Jin-Jin Wang; Xiaosen Guo; Xuemei Zhang; Yuchun Rao; Chi Zhang; Guojun Dong; Fengya Zheng; Chang-Xin Lu; Jiang Hu; Qing Zhou; Hui-Juan Liu; Haiyang Wu; Jie Xu; Peixiang Ni; Dali Zeng; Deng-Hui Liu; Peng Tian; Li-Hui Gong; Chen Ye; Guangheng Zhang; Jian Wang; Fu-kuan Tian; Dawei Xue; Yi Liao; Li Zhu

Significance Hybrid rice developed in China has been contributing greatly to the world’s food production. The pioneer super hybrid rice developed by crossing 93–11 and Peiai 64s, Liang–You–Pei–Jiu has been widely grown in China and other Asia-Pacific regions for its high yield. Here, the quality genome sequences for both parental lines were presented and updated, and a high-resolution map of genome-wide graphic genotypes was constructed by deep resequencing a core population of 132 Liang–You–Pei–Jiu recombinant inbred lines. A series of yield-associated loci were fine-mapped, and two of them were delimited to regions each covering one candidate gene with the large recombinant inbred line population. The study provided an ideal platform for molecular breeding by quantitative trait loci cloning in rice. The growing world population and shrinkage of arable land demand yield improvement of rice, one of the most important staple crops. To elucidate the genetic basis of yield and uncover its associated loci in rice, we resequenced the core recombinant inbred lines of Liang–You–Pei–Jiu, the widely cultivated super hybrid rice, and constructed a high-resolution linkage map. We detected 43 yield-associated quantitative trait loci, of which 20 are unique. Based on the high-density physical map, the genome sequences of paternal variety 93–11 and maternal cultivar PA64s of Liang–You–Pei–Jiu were significantly improved. The large recombinant inbred line population combined with plentiful high-quality single nucleotide polymorphisms and insertions/deletions between parental genomes allowed us to fine-map two quantitative trait loci, qSN8 and qSPB1, and to identify days to heading8 and lax panicle1 as candidate genes, respectively. The quantitative trait locus qSN8 was further confirmed to be days to heading8 by a complementation test. Our study provided an ideal platform for molecular breeding by targeting and dissecting yield-associated loci in rice.


Plant Molecular Biology | 2010

Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice

Jiang Hu; Li Zhu; Dali Zeng; Zhenyu Gao; Longbiao Guo; Yunxia Fang; Guangheng Zhang; Guojun Dong; Meixian Yan; Jian Liu; Qian Qian

Leaf morphology is an important agronomic trait in rice breeding. We isolated three allelic mutants of NARROW AND ROLLED LEAF1 (nrl1) which showed phenotypes of reduced leaf width and semi-rolled leaves and different degrees of dwarfism. Microscopic analysis indicated that the nrl1-1 mutant had fewer longitudinal veins and smaller adaxial bulliform cells compared with the wild-type. The NRL1 gene was mapped to the chromosome 12 and encodes the cellulose synthase-like protein D4 (OsCslD4). Sequence analyses revealed single base substitutions in the three allelic mutants. Genetic complementation and over-expression of the OsCslD4 gene confirmed the identity of NRL1. The gene was expressed in all tested organs of rice at the heading stage and expression level was higher in vigorously growing organs, such as roots, sheaths and panicles than in elsewhere. In the mutant leaves, however, the expression level was lower than that in the wild-type. We conclude that OsCslD4 encoded by NRL1 plays a critical role in leaf morphogenesis and vegetative development in rice.


Molecular Plant | 2015

A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice

Jiang Hu; Yuexing Wang; Yunxia Fang; Longjun Zeng; Jie Xu; Haiping Yu; Zhenyuan Shi; Jiangjie Pan; Dong Zhang; Shujing Kang; Li Zhu; Guojun Dong; Longbiao Guo; Dali Zeng; Guangheng Zhang; Lihong Xie; Guosheng Xiong; Jiayang Li; Qian Qian

Grain size determines grain weight and affects grain quality. Several major quantitative trait loci (QTLs) regulating grain size have been cloned; however, our understanding of the underlying mechanism that regulates the size of rice grains remains fragmentary. Here, we report the cloning and characterization of a dominant QTL, grain size on chromosome 2 (GS2), which encodes Growth-Regulating Factor 4 (OsGRF4), a transcriptional regulator. GS2 localizes to the nucleus and may act as a transcription activator. A rare mutation of GS2 affecting the binding site of a microRNA, OsmiR396c, causes elevated expression of GS2/OsGRF4. The increase in GS2 expression leads to larger cells and increased numbers of cells, which thus enhances grain weight and yield. The introduction of this rare allele of GS2/OsGRF4 into rice cultivars could significantly enhance grain weight and increase grain yield, with possible applications in breeding high-yield rice varieties.


Plant Journal | 2014

SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice.

Penggen Duan; Yuchun Rao; Dali Zeng; Yaolong Yang; Ran Xu; Baolan Zhang; Guojun Dong; Qian Qian; Yunhai Li

Although grain size is one of the most important components of grain yield, little information is known about the mechanisms that determine final grain size in crops. Here we characterize rice small grain1 (smg1) mutants, which exhibit small and light grains, dense and erect panicles and comparatively slightly shorter plants. The short grain and panicle phenotypes of smg1 mutants are caused by a defect in cell proliferation. The smg1 mutations were identified, using a map-based cloning approach, in mitogen-activated protein kinase kinase 4 (OsMKK4). Relatively higher expression of OsMKK4/SMG1 was detected in younger organs than in older ones, consistent with its role in cell proliferation. Green fluorescent protein (GFP)-OsMKK4/SMG1 fusion proteins appear to be distributed ubiquitously in plant cells. Further results revealed that OsMKK4 influenced brassinosteroid (BR) responses and the expression of BR-related genes. Thus, our findings have identified OsMKK4 as a factor for grain size, and suggest a possible link between the MAPK pathways and BRs in grain growth.

Collaboration


Dive into the Guojun Dong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiayang Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge