Guojun Hou
Second Military Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guojun Hou.
Nature Communications | 2016
Ling-Hao Zhao; Xiao Liu; He-Xin Yan; Weiyang Li; Xi Zeng; Yuan Yang; Jie Zhao; Shiping Liu; Xuehan Zhuang; Chuan Lin; Chen-Jie Qin; Yi Zhao; Ze-ya Pan; Gang Huang; Hui Liu; Jin Zhang; Ruoyu Wang; Yun Yang; Wen Wen; Guishuai Lv; H.P. Zhang; Han Wu; Shuai Huang; Ming-Da Wang; Liang Tang; Hongzhi Cao; Ling Wang; Tin-Lap Lee; Hui Jiang; Yexiong Tan
Hepatitis B virus (HBV) can integrate into the human genome, contributing to genomic instability and hepatocarcinogenesis. Here by conducting high-throughput viral integration detection and RNA sequencing, we identify 4,225 HBV integration events in tumour and adjacent non-tumour samples from 426 patients with HCC. We show that HBV is prone to integrate into rare fragile sites and functional genomic regions including CpG islands. We observe a distinct pattern in the preferential sites of HBV integration between tumour and non-tumour tissues. HBV insertional sites are significantly enriched in the proximity of telomeres in tumours. Recurrent HBV target genes are identified with few that overlap. The overall HBV integration frequency is much higher in tumour genomes of males than in females, with a significant enrichment of integration into chromosome 17. Furthermore, a cirrhosis-dependent HBV integration pattern is observed, affecting distinct targeted genes. Our data suggest that HBV integration has a high potential to drive oncogenic transformation.
Gut | 2016
Yingcheng Yang; Ximeng Lin; Xin-Yuan Lu; Guijuan Luo; Tao Zeng; Jing Tang; Feng Jiang; Liang Li; Xiuliang Cui; Wentao Huang; Guojun Hou; Xin Chen; Qing Ou‐Yang; Shanhua Tang; Huanlin Sun; Luonan Chen; Frank J. Gonzalez; Mengchao Wu; Wenming Cong; Lei Chen; Wang H
Objective Precancerous lesion, a well-established histopathologically premalignant tissue with the highest risk for tumourigenesis, develops preferentially from activation of DNA damage checkpoint and persistent inflammation. However, little is known about the mechanisms by which precancerous lesions are initiated and their physiological significance. Design Laser capture microdissection was used to acquire matched normal liver, precancerous lesion and tumour tissues. miR-484−/−, Ifnar1−/− and Tgfbr2△hep mice were employed to determine the critical role of the interferon (IFN)–microRNA pathway in precancerous lesion formation and tumourigenesis. RNA immunoprecipitation (RIP), pull-down and chromatin immunoprecipitation (ChIP) assays were applied to explore the underlying mechanisms. Results miR-484 is highly expressed in over 88% liver samples clinically. DEN-induced precancerous lesions and hepatocellular carcinoma were dramatically impaired in miR-484−/− mice. Mechanistically, ectopic expression of miR-484 initiates tumourigenesis and cell malignant transformation through synergistic activation of the transforming growth factor-β/Gli and nuclear factor-κB/type I IFN pathways. Specific acetylation of H3K27 is indispensable for basal IFN-induced continuous transcription of miR-484 and cell transformation. Convincingly, formation of precancerous lesions were significantly attenuated in both Tgfbr2△hep and Ifnar1−/− mice. Conclusions These findings demonstrate a new protumourigenic axis involving type I IFN–microRNA signalling, providing a potential therapeutic strategy to manipulate or reverse liver precancerous lesions and tumourigenesis.
Cancer Letters | 2016
Liang Li; Jianguo Chen; Xin Chen; Jing Tang; Huan Guo; Xiaofeng Wang; Ji Qian; Guijuan Luo; Fangping He; Xiaomei Lu; Yibo Ding; Yingchen Yang; Wentao Huang; Guojun Hou; Ximeng Lin; Qin Ouyang; Hengyu Li; Ruoyu Wang; Feng Jiang; Rui Pu; Jianhua Lu; Mudan Jin; Yexiong Tan; Frank J. Gonzalez; Guangwen Cao; Mengchao Wu; Hao Wen; Tangchun Wu; Li Jin; Lei Chen
The extremely poor prognosis of patients with symptomatic hepatocellular carcinoma (HCC) diagnosed clinically at advanced stages suggests an urgent need for biomarkers that can be used for prospective surveillance and pre-clinical screening for early presence of pre-malignant lesions and tumors. In a retrospective longitudinal phase 3 biomarker study in seven medical centers of China, time-series and 6 months interval-serum samples were collected from chronic hepatitis B virus infected (CHB) patient cohorts at the pre-malignant or pre-clinical stages (average 6 months prior to clinical diagnosis) and CHB patients that did not develop cancer, and circulating miRNAs measured. A set of serum miRNAs including miR-193a-3p, miR-369-5p, miR-672, miR-429 and let-7i* were identified in pre-clinical HCC patients and have the potential to screen for CHB patients at high risk to develop HCC 6-12 months after miRNAs measurement. These circulating miRNAs combined with the conventional screening tools using α-fetoprotein and ultrasound, may have great promise for the prediction and prevention of HCC in high-risk populations.
Oncotarget | 2016
Gang Liu; Guojun Hou; Liang Li; Yixue Li; Weiping Zhou; Lei Liu
Key metabolic enzymes regulatethe fluxes of small compounds to provide the basal substrates for cellular architecture and energy. Some of them are reported to be important carcinogenesis- and metastasis-related genes. In our work, we performed RNA-seq for50 pairs of normal-tumor of hepatocellular carcinoma (HCC) samples and found that the expression of dimethylglycine dehydrogenase (DMGDH) is decreased in HCC. The analysis of protein levels with Western blotting and immunohistochemistry also conformed our findings. It is proven to be a valuable biomarker for both diagnosis and prognosis in three independent datasets. Furthermore, we revealed that DMGDH suppresses migration, invasion and metastasis both in vitro and in vivo. By utilizing gene expression microarray for DMGDH, we identified several possible pathways altered in a DMGDH over-expressing cell line. Among these pathways, we noted that the phosphorylation of Akt-308/473 was significantly suppressed when DMGDH was over-expressed. In summary, our work reveals that DMGDH is a potential valuable biomarker for both diagnosis and prognosisfor HCC, and DMGDH gene expression suppresses metastasis through the Akt signaling pathway.
Hepatology | 2017
Guojun Hou; Lei Chen; Gang Liu; Liang Li; Yuan Yang; He-Xin Yan; Hui-Lu Zhang; Jing Tang; Ying–Cheng Yang; Ximeng Lin; Xin Chen; Gui juan Luo; Yan-Jing Zhu; Shanhua Tang; Jin Zhang; Hui Liu; Qingyang Gu; Ling-Hao Zhao; Yixue Li; Lei Liu; Weiping Zhou; Wang H
Potential biomarkers that can be used to determine prognosis and perform targeted therapies are urgently needed to treat patients with hepatocellular carcinoma (HCC). To meet this need, we performed a screen to identify functional genes associated with hepatocellular carcinogenesis and its progression at the transcriptome and proteome levels. We identified aldehyde dedydrogenase‐2 (ALDH2) as a gene of interest for further study. ALDH2 levels were significantly lower at the mRNA and protein level in tumor tissues than in normal tissues, and they were even lower in tissues that exhibited increased migratory capacity. A study of clinical associations showed that ALDH2 is correlated with survival and multiple migration‐associated clinicopathological traits, including the presence of metastasis and portal vein tumor thrombus. The result of overexpressing or knocking down ALDH2 showed that this gene inhibited migration and invasion both in vivo and in vitro. We also found that ALDH2 altered the redox status of cells by regulating acetaldehyde levels and that it further activated the AMP‐activated protein kinase (AMPK) signaling pathway. Conclusion: Decreased levels of ALDH2 may indicate a poor prognosis in HCC patients, while forcing the expression of ALDH2 in HCC cells inhibited their aggressive behavior in vitro and in mice largely by modulating the activity of the ALDH2‐acetaldehyde‐redox‐AMPK axis. Therefore, identifying ALDH2 expression levels in HCC might be a useful strategy for classifying HCC patients and for developing potential therapeutic strategies that specifically target metastatic HCC. (Hepatology 2017;65:1628‐1644).
Oncotarget | 2016
Guojun Hou; Gang Liu; Yuan Yang; Yixue Li; Sheng-xian Yuan; Ling-Hao Zhao; Mengchao Wu; Lei Liu; Weiping Zhou
Hepatocellular carcinoma (HCC) is among the most malignant cancers worldwide, lacking biomarkers for subtyping and the reliable prognostication. Herein, we report a novel biomarker, NEU1 (neuraminidase 1), is up-regulated in most samples of HCC. The diagnostic value of NEU1 was evaluated by ROC, and the AUC (area under curve) reached 0.87 and 0.96 in two independent datasets, respectively. The survival differences of HCC patients with high or low expression of NEU1 were statistically significant, and a significant correlation between NEU1 expression and clinical information including stage, differentiation, AFP and embolus were observed. NEU1 expression, at both the mRNA and protein levels, were also higher in the portal vein tumor thrombus than tumor tissues. We also measured the proliferation and migration ability of two HCC cell lines following NEU1 interference and over-expression. Migration and proliferation rate were increased in NEU1 high expression groups. Moreover, gene expression studies identified pathways significantly associated with NEU1 expression. Among them, all the genes involved in spliceosomepathway were up regulated in NEU1-high group. In summary, our work identified NEU1 as a novel biomarker for both diagnosis and prognosis in HCC, and one of the most altered pathway of NEU1 is spliceosome.
Scientific Reports | 2017
Guojun Hou; Chuanpeng Dong; Zihui Dong; Gang Liu; Huilin Xu; Lei Chen; Lei Liu; Wang H; Weiping Zhou
Hepatocellular carcinoma (HCC) is one of the most aggressive and heterogeneous cancers worldwide. Herein, we demonstrate KIF4A (Chromosome-associated kinesin KIF4A) as a potential biomarker, is up-regulated in most samples of HCC. The expression level of KIF4A in tumor tissue is significantly associated with the survival time, and a significant correlation between KIF4A expression and clinical information stage, metastasis and tumor dimension was observed. We further measured the proliferation and migration ability of two HCC cell lines, HCC-LM3 and PLC/PRF/5, following KIF4A-siRNA transfection. Knocking down of KIF4A significantly reduced migration and proliferation ability. Moreover, we also measured the proliferation and migration ability of two HCC cell lines through KIF4A overexpression, and found that KIF4A overexpression could enhance migration and proliferation ability, indicating that KIF4A exhibits oncogenic effects. Besides, study based on TCGA cohorts also reveals high KIF4A mRNA expression are significantly associated with shorter overall survival in multiple cancer types. Gene sets enrichment analysis exhibited that cell cycle related pathways and p53 signaling pathways to be top altered pathways of in KIF4A-high expression group in HCC, suggesting the potential role of KIF4A in mediating tumor initiation and progression. In summary, our work identified KIF4A as a potential predictive and prognostic marker for hepatocellular carcinoma.
Hepatology | 2018
Qing Ou‐Yang; Ximeng Lin; Yan-Jing Zhu; Bo Zheng; Liang Li; Yingcheng Yang; Guojun Hou; Xin Chen; Guijuan Luo; Feng Huo; Qibin Leng; Frank J. Gonzalez; Xiao‐Qing Jiang; Wang H; Lei Chen
It is urgent that the means to improve liver regeneration (LR) be found, while mitigating the concurrent risk of hepatocarcinogenesis (HCG). Nuclear receptor corepressor 1 (NCoR1) is a co‐repressor of nuclear receptors, which regulates the expression level of metabolic genes; however, little is known about its potential contribution for LR and HCG. Here, we found that liver‐specific NCoR1 knockout in mice (NCoR1Δhep) dramatically enhances LR after partial hepatectomy and, surprisingly, blocks the process of diethylnitrosamine (DEN)‐induced HCG. Both RNA‐sequencing and metabolic assay results revealed improved expression of Fasn and Acc2 in NCoR1Δhep mice, suggesting the critical role of de novo fatty acid synthesis (FAS) in LR. Continual enhanced de novo FAS in NCoR1Δhep mice resulted in overwhelmed adenosine triphosphate ATP and nicotinamide adenine dinucleotide phosphate (NADPH) consumption and increased mitochondrial reactive oxygen species production, which subsequently attenuated HCG through inducing apoptosis of hepatocytes at an early stage after DEN administration. Conclusion: NCoR1 functions as a negative modulator for hepatic de novo FAS and mitochondria energy adaptation, playing distinct roles in regeneration or carcinogenesis. (Hepatology 2018;67:1071–1087)
Scientific Reports | 2017
Yuan Yang; Ling-Hao Zhao; Bo Huang; Guojun Hou; Beibei Zhou; Jin Qian; Sheng-xian Yuan; Huasheng Xiao; Minghui Li; Weiping Zhou
Hypermethylation of CpG islands in the promoter region of tumor suppressor genes (TSGs) and their subsequent silencing is thought to be one of the main mechanisms of carcinogenesis. MBD2b enrichment coupled with a NimbleGen array was applied to examine the genome-wide CpG island methylation profile of hepatocellular carcinoma (HCC). Hypermethylated DNA of 58 pairs of HCC and adjacent tissue samples was enriched and hybridized in the same array. Aberrant hypermethylated peaks of HCC and adjacent tissues were screened and annotated after data processing using NimbleScan2.5 and our newly developed Weighting and Scoring (WAS) method, respectively. Validation using bisulfite sequencing of randomly selected ANKRD45, APC, CDX1, HOXD3, PTGER and TUBB6 genes demonstrated significant hypermethylation modification in HCC samples, consistent with the array data.
Oncotarget | 2017
Gang Liu; Chuanpeng Dong; Xing Wang; Guojun Hou; Yu Zheng; Huilin Xu; Xiaohui Zhan; Lei Liu
Clinical and pathological indicators are inadequate for prognosis of stage II and III colorectal carcinoma (CRC). In this study, we utilized the activity of regulatory factors, univariate Cox regression and random forest for variable selection and developed a multivariate Cox model to predict the overall survival of Stage II/III colorectal carcinoma in GSE39582 datasets (469 samples). Patients in low-risk group showed a significant longer overall survival and recurrence-free survival time than those in high-risk group. This finding was further validated in five other independent datasets (GSE14333, GSE17536, GSE17537, GSE33113, and GSE37892). Besides, associations between clinicopathological information and risk score were analyzed. A nomogram including risk score was plotted to facilitate the utilization of risk score. The risk score model is also demonstrated to be effective on predicting both overall and recurrence-free survival of chemotherapy received patients. After performing Gene Set Enrichment Analysis (GSEA) between high and low risk groups, we found that several cell-cell interaction KEGG pathways were identified. Funnel plot results showed that there was no publication bias in these datasets. In summary, by utilizing the regulatory activity in stage II and III colorectal carcinoma, the risk score successfully predicts the survival of 1021 stage II/III CRC patients in six independent datasets.