Guosong Liu
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guosong Liu.
Nature | 1999
Ya-Ping Tang; Eiji Shimizu; Gilles R. Dube; Claire Rampon; Geoffrey A. Kerchner; Min Zhuo; Guosong Liu; Joe Z. Tsien
Hebbs rule (1949) states that learning and memory are based on modifications of synaptic strength among neurons that are simultaneously active. This implies that enhanced synaptic coincidence detection would lead to better learning and memory. If the NMDA (N-methyl-D-aspartate) receptor, a synaptic coincidence detector, acts as a graded switch for memory formation, enhanced signal detection by NMDA receptors should enhance learning and memory. Here we show that overexpression of NMDA receptor 2B (NR2B) in the forebrains of transgenic mice leads to enhanced activation of NMDA receptors, facilitating synaptic potentiation in response to stimulation at 10–100 Hz. These mice exhibit superior ability in learning and memory in various behavioural tasks, showing that NR2B is critical in gating the age-dependent threshold for plasticity and memory formation. NMDA-receptor-dependent modifications of synaptic efficacy, therefore, represent a unifying mechanism for associative learning and memory. Our results suggest that genetic enhancement of mental and cognitive attributes such as intelligence and memory in mammals is feasible.
Neuron | 2001
Carlo Sala; Valentin Piëch; Nathan R. Wilson; Maria Passafaro; Guosong Liu; Morgan Sheng
The Shank family of proteins interacts with NMDA receptor and metabotropic glutamate receptor complexes in the postsynaptic density (PSD). Targeted to the PSD by a PDZ-dependent mechanism, Shank promotes the maturation of dendritic spines and the enlargement of spine heads via its ability to recruit Homer to postsynaptic sites. Shank and Homer cooperate to induce accumulation of IP3 receptors in dendritic spines and formation of putative multisynapse spines. In addition, postsynaptic expression of Shank enhances presynaptic function, as measured by increased minifrequency and FM4-64 uptake. These data suggest a central role for the Shank scaffold in the structural and functional organization of the dendritic spine and synaptic junction.
The Journal of Neuroscience | 2005
Nathan R. Wilson; Jiansheng Kang; Emily V. Hueske; Tony Leung; Hélène Varoqui; Jonathan G. Murnick; Jeffrey D. Erickson; Guosong Liu
A fundamental question in synaptic physiology is whether the unitary strength of a synapse can be regulated by presynaptic characteristics and, if so, what those characteristics might be. Here, we characterize a newly proposed mechanism for altering the strength of glutamatergic synapses based on the recently identified vesicular glutamate transporter VGLUT1. We provide direct evidence that filling in isolated synaptic vesicles is subject to a dynamic equilibrium that is determined by both the concentration of available glutamate and the number of vesicular transporters participating in loading. We observe that changing the number of vesicular transporters expressed at hippocampal excitatory synapses results in enhanced evoked and miniature responses and verify biophysically that these changes correspond to an increase in the amount of glutamate released per vesicle into the synaptic cleft. In addition, we find that this modulation of synaptic strength by vesicular transporter expression is endogenously regulated, both across development to coincide with a maturational increase in vesicle cycling and quantal amplitude and by excitatory and inhibitory receptor activation in mature neurons to provide an activity-dependent scaling of quantal size via a presynaptic mechanism. Together, these findings underscore that vesicular transporter expression is used endogenously to directly regulate the extent of glutamate release, providing a concise presynaptic mechanism for controlling the quantal efficacy of excitatory transmission during synaptic refinement and plasticity.
Nature Neuroscience | 2005
Anthone W. Dunah; Emily Hueske; Michael Wyszynski; Casper C. Hoogenraad; Jacek Jaworski; Daniel T. S. Pak; Alyson Simonetta; Guosong Liu; Morgan Sheng
Leukocyte common antigen–related (LAR) family receptor protein tyrosine phosphatases (LAR-RPTP) bind to liprin-α (SYD2) and are implicated in axon guidance. We report that LAR-RPTP is concentrated in mature synapses in cultured rat hippocampal neurons, and is important for the development and maintenance of excitatory synapses in hippocampal neurons. RNA interference (RNAi) knockdown of LAR or dominant-negative disruption of LAR function results in loss of excitatory synapses and dendritic spines, reduction of surface AMPA receptors, impairment of dendritic targeting of the cadherin–β-catenin complex, and reduction in the amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs). Cadherin, β-catenin and GluR2/3 are tyrosine phosphoproteins that coimmunoprecipitate with liprin-α and GRIP from rat brain extracts. We propose that the cadherin-β-catenin complex is cotransported with AMPA receptors to synapses and dendritic spines by a mechanism that involves binding of liprin-α to LAR-RPTP and tyrosine dephosphorylation by LAR-RPTP.
Neuron | 2004
Inna Slutsky; Safa Sadeghpour; Bing Li; Guosong Liu
The plasticity of synapses within neural circuits is regulated by activity, but the underlying mechanisms remain elusive. Using the dye FM1-43 to directly image presynaptic function, we found that large numbers of presynaptic terminals in hippocampal cultures have a low release probability. While these terminals were not readily modifiable, a transient but not permanent long-term reduction of network activity or Ca2+ influx could increase their modifiability. This modulation of plasticity was mediated by Ca2+ flux through NMDA and voltage-gated calcium channels and was lost within 48 hr. A more permanent enhancement of synaptic plasticity was achieved by selectively reducing the Ca2+ flux associated with uncorrelated activity via adjustment of the voltage-dependent Mg2+ block of the NMDAR. Upregulation of NR2B-containing NMDARs induced by this treatment is an important but not sole contributor to the enhancement of plasticity. Thus, quantity and quality of activity have differential effects on the intrinsic plasticity of neurons.
Nature Neuroscience | 2000
Guoping Fan; Christophe Egles; Yi Sun; Liliana Minichiello; John J. Renger; Rüdiger Klein; Guosong Liu; Rudolf Jaenisch
To directly compare biological activities of the neurotrophins NT4 and BDNF in vivo, we replaced the BDNF coding sequence with the NT4 sequence in mice (Bdnfnt4-ki). Mice expressing NT4 in place of BDNF were viable, in contrast with BDNF null mutants, which die shortly after birth. Although the Bdnfnt4-ki/nt4-ki and wild-type Bdnf+/+ alleles yielded similar levels of NT4 and BDNF proteins, NT4 supported more sensory neurons than BDNF and promoted functional synapse formation in cultured hippocampal neurons. Homozygous Bdnfnt4-ki/nt4-ki mice showed reduced body weight, infertility and skin lesions, suggesting unique biological activities of NT4 in vivo. The distinct activities of NT4 and BDNF may result partly from differential activation of the TrkB receptor and its down-stream signals.
Neuropharmacology | 1995
Guosong Liu; Richard W. Tsien
We have used a focal stimulation method to study neurotransmission at synapses onto hippocampal pyramidal neurons in cultures derived from neonatal rats. Single functional boutons were visualized by activity-dependent preloading with the fluorescent dye FM1-43, then focally stimulated by localized application of elevated K+/Ca2+ solution via a puffer pipette, while postsynaptic currents were recorded under whole cell voltage clamp (Liu and Tsien, 1995). This paper gives a detailed description of the main properties of this experimental system and of information it has provided about fundamental properties of hippocampal synapses. Most of the experiments focused on excitatory postsynaptic currents (EPSCs), but preliminary recordings of inhibitory events (IPSCs) are also reported here. The unitary EPSCs at individual synapses varied greatly in amplitude, but were relatively uniform in their time course. The frequency of the synaptic events was greatly reduced by lowering the external Ca2+ concentration or by application of baclofen, a GABAB receptor agonist. Frequent repetitive stimulation produced a decline in the incidence of EPSCs that was readily reversed upon rest. We attribute the decline to exhaustion of a pool of available vesicles; typically, recovery proceeded with a time constant of approximately 40 sec (23 degrees C), and involved a vesicular pool capable of generating approximately 90 EPSCs without recycling. While synaptic currents were broadly distributed in amplitude (Bekkers et al., 1990), this distribution was remarkably similar at multiple synapses on a given postsynaptic neuron. The median synaptic current amplitude varied 4-fold across different cells, decreasing markedly with increasingly dense synaptic innervation. The implications of these results for cellular signal processing and quantal analysis are discussed.
The Journal of Neuroscience | 2011
Nashat Abumaria; Bin Yin; Ling Zhang; Xiang-Yao Li; Tao Chen; Giannina Descalzi; Liangfang Zhao; Matae Ahn; Lin Luo; Chen Ran; Min Zhuo; Guosong Liu
Anxiety disorders, such as phobias and posttraumatic stress disorder, are among the most common mental disorders. Cognitive therapy helps in treating these disorders; however, many cases relapse or resist the therapy, which justifies the search for cognitive enhancers that might augment the efficacy of cognitive therapy. Studies suggest that enhancement of plasticity in certain brain regions such as the prefrontal cortex (PFC) and/or hippocampus might enhance the efficacy of cognitive therapy. We found that elevation of brain magnesium, by a novel magnesium compound [magnesium-l-threonate (MgT)], enhances synaptic plasticity in the hippocampus and learning and memory in rats. Here, we show that MgT treatment enhances retention of the extinction of fear memory, without enhancing, impairing, or erasing the original fear memory. We then explored the molecular basis of the effects of MgT treatment on fear memory and extinction. In intact animals, elevation of brain magnesium increased NMDA receptors (NMDARs) signaling, BDNF expression, density of presynaptic puncta, and synaptic plasticity in the PFC but, interestingly, not in the basolateral amygdala. In vitro, elevation of extracellular magnesium concentration increased synaptic NMDAR current and plasticity in the infralimbic PFC, but not in the lateral amygdala, suggesting a difference in their sensitivity to elevation of brain magnesium. The current study suggests that elevation of brain magnesium might be a novel approach for enhancing synaptic plasticity in a regional-specific manner leading to enhancing the efficacy of extinction without enhancing or impairing fear memory formation.
The Journal of Neuroscience | 2007
Nathan R. Wilson; Michael T. Ty; Donald E. Ingber; Mriganka Sur; Guosong Liu
Neurons in plastic regions of the brain undergo fundamental changes in the number of cells connecting to them as a result of development, plasticity and disease. Across these same time periods, functional changes in cellular and synaptic physiology are known to occur and are often characterized as developmental features of these periods. However, it remains possible that many such changes are direct consequences of the modified degree of partnering, and that neurons intrinsically scale their physiological parameters with network size. To systematically vary a recurrent networks number of neurons while measuring its synaptic properties, we used microfabricated extracellular matrix adhesive islands created with soft lithography to culture neuronal clusters of precise sizes, and assessed their intrinsic connectivity using intracellular recordings and confocal microscopy. Both large and small clusters supported constant densities of excitatory and inhibitory neurons. However, neurons that were provided with more potential partners (larger clusters) formed more connections per cell via an expanded dendritic surface than cocultured smaller clusters. Electrophysiologically, firing rate was preserved across clusters even as size and synapse number increased, due in part to synapses in larger networks having reduced unitary strengths, and sparser paired connectivity. Larger networks also featured a particular increase in the number of excitatory connections onto inhibitory dendrites. We suggest that these specific homeostatic mechanisms, which match the number, strength, and architecture of connections to the number of total available cellular partners in the network, could account for several known phenomena implicated in the formation, organization and degeneration of neuronal circuits.
Current Opinion in Neurobiology | 1991
Jack L. Feldman; J. C. Smith; Guosong Liu
The development of in vitro en bloc preparations of mammalian neuroaxis that retain functional circuits for respiratory pattern generation has led to novel observations that have expanded our understanding of this important motor/homeostatic system. This experimental approach is a powerful and unique way to study complex integrative neural function concurrently at cellular, synaptic, and network levels.