Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guosong Qin is active.

Publication


Featured researches published by Guosong Qin.


Scientific Reports | 2016

One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system

Xianlong Wang; Chunwei Cao; Jiaojiao Huang; Jing Yao; Tang Hai; Qiantao Zheng; Xiao Wang; Hongyong Zhang; Guosong Qin; Jinbo Cheng; Yanfang Wang; Zengqiang Yuan; Qi Zhou; Hongmei Wang; Jianguo Zhao

Pig shows multiple superior characteristics in anatomy, physiology, and genome that have made this species to be more suitable models for human diseases, especially for neurodegenerative diseases, because they have similar cerebral convolutions compared with human neocortex. Recently, CRISPR/Cas9 system shows enormous potential for engineering the pig genome. In this study, we expect to generate human Parkinson’s disease pig model using CRISPR/Cas9 system by simultaneously targeting three distinct genomic loci, parkin/DJ-1/PINK1, in Bama miniature pigs. By co-injection of Cas9 mRNA and multiplexing single guide RNAs (sgRNAs) targeting parkin, DJ-1, and PINK1 genes, respectively, into in vivo derived pronuclear embryos, we simultaneously targeted three distinct genomic loci. The gene modified piglets remain healthy and display normal behavior at the age of 10 months. In addition, despite the high number of sgRNAs were employed in the present study, our trio-based whole-genome sequencing analysis suggested that the incidence of off-target events is low. Our results demonstrate that the simplicity, efficiency, and power of the CRISPR/Cas9 system to allow for the modification of multiple genes in pigs and yield results of high medical value.


Scientific Reports | 2015

Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs

Xianlong Wang; Jinwei Zhou; Chunwei Cao; Jiaojiao Huang; Tang Hai; Yanfang Wang; Qiantao Zheng; Hongyong Zhang; Guosong Qin; Xiangnan Miao; Hongmei Wang; Suizhong Cao; Qi Zhou; Jianguo Zhao

Genetic engineering in livestock was greatly enhanced by the emergence of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), which can be programmed with a single-guide RNA (sgRNA) to generate site-specific DNA breaks. However, the uncertainties caused by wide variations in sgRNA activity impede the utility of this system in generating genetically modified pigs. Here, we described a single blastocyst genotyping system to provide a simple and rapid solution to evaluate and compare the sgRNA efficiency at inducing indel mutations for a given gene locus. Assessment of sgRNA mutagenesis efficiencies can be achieved within 10 days from the design of the sgRNA. The most effective sgRNA selected by this system was successfully used to induce site-specific insertion through homology-directed repair at a frequency exceeding 13%. Additionally, the highly efficient gene deletion via the selected sgRNA was confirmed in pig fibroblast cells, which could serve as donor cells for somatic cell nuclear transfer. We further showed that direct cytoplasmic injection of Cas9 mRNA and the favorable sgRNA into zygotes could generate biallelic knockout piglets with an efficiency of up to 100%. Thus, our method considerably reduces the uncertainties and expands the practical possibilities of CRISPR/Cas9-mediated genome engineering in pigs.


Scientific Reports | 2015

Efficient bi-allelic gene knockout and site-specific knock-in mediated by TALENs in pigs

Jing Yao; Jiaojiao Huang; Tang Hai; Xianlong Wang; Guosong Qin; Hongyong Zhang; Rong Wu; Chunwei Cao; Jianzhong Jeff Xi; Zengqiang Yuan; Jianguo Zhao

Pigs are ideal organ donors for xenotransplantation and an excellent model for studying human diseases, such as neurodegenerative disease. Transcription activator-like effector nucleases (TALENs) are used widely for gene targeting in various model animals. Here, we developed a strategy using TALENs to target the GGTA1, Parkin and DJ-1 genes in the porcine genome using Large White porcine fibroblast cells without any foreign gene integration. In total, 5% (2/40), 2.5% (2/80), and 22% (11/50) of the obtained colonies of fibroblast cells were mutated for GGTA1, Parkin, and DJ-1, respectively. Among these mutant colonies, over 1/3 were bi-allelic knockouts (KO), and no off-target cleavage was detected. We also successfully used single-strand oligodeoxynucleotides to introduce a short sequence into the DJ-1 locus. Mixed DJ-1 mutant colonies were used as donor cells for somatic cell nuclear transfer (SCNT), and three female piglets were obtained (two were bi-allelically mutated, and one was mono-allelically mutated). Western blot analysis showed that the expression of the DJ-1 protein was disrupted in KO piglets. These results imply that a combination of TALENs technology with SCNT can efficiently generate bi-allelic KO pigs without the integration of exogenous DNA. These DJ-1 KO pigs will provide valuable information for studying Parkinsons disease.


Reproduction | 2016

BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei

Jiaojiao Huang; Hongyong Zhang; Jing Yao; Guosong Qin; Feng Wang; Xianlong Wang; Ailing Luo; Qiantao Zheng; Chunwei Cao; Jianguo Zhao

Accumulating evidence suggests that faulty epigenetic reprogramming leads to the abnormal development of cloned embryos and results in the low success rates observed in all mammals produced through somatic cell nuclear transfer (SCNT). The aberrant methylation status of H3K9me and H3K9me2 has been reported in cloned mouse embryos. To explore the role of H3K9me2 and H3K9me in the porcine somatic cell nuclear reprogramming, BIX-01294, known as a specific inhibitor of G9A (histone-lysine methyltransferase of H3K9), was used to treat the nuclear-transferred (NT) oocytes for 14-16 h after activation. The results showed that the developmental competence of porcine SCNT embryos was significantly enhanced both in vitro (blastocyst rate 16.4% vs 23.2%, P<0.05) and in vivo (cloning rate 1.59% vs 2.96%) after 50 nm BIX-01294 treatment. BIX-01294 treatment significantly decreased the levels of H3K9me2 and H3K9me at the 2- and 4-cell stages, which are associated with embryo genetic activation, and increased the transcriptional expression of the pluripotency genes SOX2, NANOG and OCT4 in cloned blastocysts. Furthermore, the histone acetylation levels of H3K9, H4K8 and H4K12 in cloned embryos were decreased after BIX-01294 treatment. However, co-treatment of activated NT oocytes with BIX-01294 and Scriptaid rescued donor nuclear chromatin from decreased histone acetylation of H4K8 that resulted from exposure to BIX-01294 only and consequently improved the preimplantation development of SCNT embryos (blastocyst formation rates of 23.7% vs 21.5%). These results indicated that treatment with BIX-01294 enhanced the developmental competence of porcine SCNT embryos through improvements in epigenetic reprogramming and gene expression.


Biology of Reproduction | 2015

Impairment of Preimplantation Porcine Embryo Development by Histone Demethylase KDM5B Knockdown Through Disturbance of Bivalent H3K4me3-H3K27me3 Modifications

Jiaojiao Huang; Hongyong Zhang; Xianlong Wang; Kyle B. Dobbs; Jing Yao; Guosong Qin; Kristin M. Whitworth; Eric M. Walters; Randall S. Prather; Jianguo Zhao

ABSTRACT KDM5B (JARID1B/PLU1) is a H3K4me2/3 histone demethylase that is implicated in cancer development and proliferation and is also indispensable for embryonic stem cell self-renewal, cell fate, and murine embryonic development. However, little is known about the role of KDM5B during preimplantation embryo development. Here we show that KDM5B is critical to porcine preimplantation development. KDM5B was found to be expressed in a stage-specific manner, consistent with demethylation of H3K4me3, with the highest expression being observed from the 4-cell to the blastocyst stages. Knockdown of KDM5B by morpholino antisense oligonucleotides injection impaired porcine embryo development to the blastocyst stage. The impairment of embryo development might be caused by increased expression of H3K4me3 at the 4-cell and blastocyst stages, which disturbs the balance of bivalent H3K4me3-H3K27me3 modifications at the blastocyst stage. Decreased abundance of H3K27me3 at blastocyst stage activates multiple members of homeobox genes (HOX), which need to be silenced for faithful embryo development. Additionally, the histone demethylase KDM6A was found to be upregulated by knockdown of KDM5B, which indicated it was responsible for the decreased abundance of H3K27me3 at the blastocyst stage. The transcriptional levels of Ten-Eleven Translocation gene family members (TET1, TET2, and TET3) are found to be increased by knockdown of KDM5B, which indicates cross talk between histone modifications and DNA methylation. The studies above indicate that KDM5B is required for porcine embryo development through regulating the balance of bivalent H3K4me3-H3K27me3 modifications.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity

Qiantao Zheng; Jun Lin; Jiaojiao Huang; Hongyong Zhang; Rui Zhang; X.D. Zhang; Chunwei Cao; Catherine Hambly; Guosong Qin; Jing Yao; Ruigao Song; Qitao Jia; Xiao Wang; Yongshun Li; Nan Zhang; Zhengyu Piao; Rongcai Ye; John R. Speakman; Hongmei Wang; Qi Zhou; Yanfang Wang; Wanzhu Jin; Jianguo Zhao

Significance Uncoupling protein 1 (UCP1) is responsible for brown adipose tissue-mediated thermogenesis and plays a critical role in protecting against cold and regulating energy homeostasis. Modern pigs lack functional UCP1, which makes them susceptible to cold and prone to fat deposition and results in neonatal mortality and decreased production efficiency. In the current study, a CRISPR/Cas9-mediated homologous recombination-independent approach was established, and mouse adiponectin-UCP1 was efficiently inserted into the porcine endogenous UCP1 locus. The resultant UCP1 KI pigs showed an improved ability to maintain body temperature, decreased fat deposition, and increased carcass lean percentage. UCP1 KI pigs are a potentially valuable resource for the pig industry that can improve pig welfare and reduce economic losses. Uncoupling protein 1 (UCP1) is localized on the inner mitochondrial membrane and generates heat by uncoupling ATP synthesis from proton transit across the inner membrane. UCP1 is a key element of nonshivering thermogenesis and is most likely important in the regulation of body adiposity. Pigs (Artiodactyl family Suidae) lack a functional UCP1 gene, resulting in poor thermoregulation and susceptibility to cold, which is an economic and pig welfare issue owing to neonatal mortality. Pigs also have a tendency toward fat accumulation, which may be linked to their lack of UCP1, and thus influences the efficiency of pig production. Here, we report application of a CRISPR/Cas9-mediated, homologous recombination (HR)-independent approach to efficiently insert mouse adiponectin-UCP1 into the porcine endogenous UCP1 locus. The resultant UCP1 knock-in (KI) pigs showed an improved ability to maintain body temperature during acute cold exposure, but they did not have alterations in physical activity levels or total daily energy expenditure (DEE). Furthermore, ectopic UCP1 expression in white adipose tissue (WAT) dramatically decreased fat deposition by 4.89% (P < 0.01), consequently increasing carcass lean percentage (CLP; P < 0.05). Mechanism studies indicated that the loss of fat upon UCP1 activation in WAT was linked to elevated lipolysis. UCP1 KI pigs are a potentially valuable resource for agricultural production through their combination of cold adaptation, which improves pig welfare and reduces economic losses, with reduced fat deposition and increased lean meat production.


Journal of Molecular Cell Biology | 2017

Cold adaptation in pigs depends on UCP3 in beige adipocytes

Jun Lin; Chunwei Cao; Cong Tao; Rongcai Ye; Meng Dong; Qiantao Zheng; Chao Wang; Xiaoxiao Jiang; Guosong Qin; Changguo Yan; Kui Li; John R. Speakman; Yanfang Wang; Wanzhu Jin; Jianguo Zhao

Pigs lack functional uncoupling protein 1 (UCP1) making them susceptible to cold. Nevertheless, several pig breeds are known to be cold resistant. The molecular mechanism(s) enabling such adaptation are currently unknown. Here, we show that this resistance is not dependent on shivering, but rather depends on UCP3 and white adipose tissue (WAT) browning. In two cold-resistant breeds (Tibetan and Min), but not a cold-sensitive breed (Bama), WAT browning was induced after cold exposure. Beige adipocytes from Tibetan pigs exhibited greater oxidative capacity than those from Bama pigs. Notably, UCP3 expression was significantly increased only in cold-resistant breeds, and knockdown of UCP3 expression in Tibetan adipocytes phenocopied Bama adipocytes in culture. Moreover, the eight dominant pig breeds found across China can be classified into cold-sensitive and cold-resistant breeds based on the UCP3 cDNA sequence. This study indicates that UCP3 has contributed to the evolution of cold resistance in the pig and overturns the orthodoxy that UCP1 is the only thermogenic uncoupling protein.


eLife | 2017

Pilot study of large-scale production of mutant pigs by ENU mutagenesis

Tang Hai; Chunwei Cao; Haitao Shang; Weiwei Guo; Yanshuang Mu; Shulin Yang; Ying Zhang; Qiantao Zheng; Tao Zhang; Xianlong Wang; Yu Liu; Qingran Kong; Kui Li; Dayu Wang; Meng Qi; Qianlong Hong; Rui Zhang; Xiupeng Wang; Qitao Jia; Xiao Wang; Guosong Qin; Yongshun Li; Ailing Luo; Weiwu Jin; Jing Yao; Jiaojiao Huang; Hongyong Zhang; Menghua Li; Xiangmo Xie; Xuejuan Zheng

N-ethyl-N-nitrosourea (ENU) mutagenesis is a powerful tool to generate mutants on a large scale efficiently, and to discover genes with novel functions at the whole-genome level in Caenorhabditis elegans, flies, zebrafish and mice, but it has never been tried in large model animals. We describe a successful systematic three-generation ENU mutagenesis screening in pigs with the establishment of the Chinese Swine Mutagenesis Consortium. A total of 6,770 G1 and 6,800 G3 pigs were screened, 36 dominant and 91 recessive novel pig families with various phenotypes were established. The causative mutations in 10 mutant families were further mapped. As examples, the mutation of SOX10 (R109W) in pig causes inner ear malfunctions and mimics human Mondini dysplasia, and upregulated expression of FBXO32 is associated with congenital splay legs. This study demonstrates the feasibility of artificial random mutagenesis in pigs and opens an avenue for generating a reservoir of mutants for agricultural production and biomedical research. DOI: http://dx.doi.org/10.7554/eLife.26248.001


Biochemical and Biophysical Research Communications | 2016

PPARγ is regulated by miR-27b-3p negatively and plays an important role in porcine oocyte maturation

Chunlei Song; Jing Yao; Chunwei Cao; Xiaojuan Liang; Jiaojiao Huang; Ziqiang Han; Yang Zhang; Guosong Qin; Cong Tao; Chengbo Li; Haoran Yang; Jianguo Zhao; Kui Li; Yanfang Wang

To elucidate the key miRNAs and the signalling pathways that are involved in porcine oocyte maturation, we performed a deep sequencing analysis of the miRNAs of pig germinal vesicle (GV) oocytes and metaphase II (MII) oocytes. Seven differentially expressed (DE) miRNAs were identified and the expression levels of miR-21 and miR-27b-3p were further confirmed by QPCR analysis. The target genes of 7 DE miRNAs were predicted and subjected to pathway analysis. Interestingly, fatty acid metabolism and fatty acid biosynthesis were the top two significantly enriched molecular functions during oocyte maturation. Heat map, which was built with 7 DE miRNAs and the enriched the molecular functions, revealed that miR-21, miR-27b-3p, miR-10a-5p and miR-10b-5p were involved in fatty acid metabolism. In particular, the regulatory role of miR-27b-3p on peroxisome proliferator-activated receptor-γ (PPARγ) was confirmed by their inversed expression patterns in GV and MII oocytes and luciferase report assays. In addition, we observed that PPARγ agonist (rosiglitazone) treatment significantly enhanced porcine oocyte maturation rate and early embryo developmental competent. Taken together, our results demonstrated that miR-27b and its target, PPARγ, play the vital roles in pig oocyte maturation through regulating the fatty acid metabolism. These data increased our understanding of the regulatory gene networks in porcine oocyte maturation and development.


Blood | 2017

Thyroid hormone regulates hematopoiesis via the TR-KLF9 axis

Ying Zhang; Yuanyuan Xue; Chunwei Cao; Jiaojiao Huang; Qianlong Hong; Tang Hai; Qitao Jia; Xianlong Wang; Guosong Qin; Jing Yao; Xiao Wang; Qiantao Zheng; Rui Zhang; Yongshun Li; Ailing Luo; Nan Zhang; Guizhi Shi; Yanfang Wang; Hao Ying; Zhonghua Liu; Hongmei Wang; Anming Meng; Qi Zhou; Hong Wei; Feng Liu; Jianguo Zhao

Congenital hypothyroidism (CH) is one of the most prevalent endocrine diseases, for which the underlying mechanisms remain unknown; it is often accompanied by anemia and immunodeficiency in patients. Here, we created a severe CH model together with anemia and T lymphopenia to mimic the clinical features of hypothyroid patients by ethylnitrosourea (ENU) mutagenesis in Bama miniature pigs. A novel recessive c.1226A>G transition of the dual oxidase 2 (DUOX2) gene was identified as the causative mutation. This mutation hindered the production of hydrogen peroxide (H2O2) and thus contributed to thyroid hormone (TH) synthesis failure. Transcriptome sequencing analysis of the thymuses showed that Krüppel-like factor 9 (KLF9) was predominantly downregulated in hypothyroid mutants. KLF9 was verified to be directly regulated by TH in a TH receptor (TR)-dependent manner both in vivo and in vitro. Furthermore, knockdown of klf9 in zebrafish embryos impaired hematopoietic development including erythroid maturation and T lymphopoiesis. Our findings suggest that the TR-KLF9 axis is responsible for the hematopoietic dysfunction and might be exploited for the development of novel therapeutic interventions for thyroid diseases.

Collaboration


Dive into the Guosong Qin's collaboration.

Top Co-Authors

Avatar

Chunwei Cao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jianguo Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiaojiao Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jing Yao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongyong Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qiantao Zheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xianlong Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tang Hai

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongmei Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qi Zhou

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge