Guoxu Zhou
South China University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guoxu Zhou.
IEEE Transactions on Image Processing | 2011
Zuyuan Yang; Guoxu Zhou; Shengli Xie; Shuxue Ding; Jun-Mei Yang; Jun Zhang
Nonnegative matrix factorization (NMF) is a widely used method for blind spectral unmixing (SU), which aims at obtaining the endmembers and corresponding fractional abundances, knowing only the collected mixing spectral data. It is noted that the abundance may be sparse (i.e., the endmembers may be with sparse distributions) and sparse NMF tends to lead to a unique result, so it is intuitive and meaningful to constrain NMF with sparseness for solving SU. However, due to the abundance sum-to-one constraint in SU, the traditional sparseness measured by L0/L1-norm is not an effective constraint any more. A novel measure (termed as S-measure) of sparseness using higher order norms of the signal vector is proposed in this paper. It features the physical significance. By using the S-measure constraint (SMC), a gradient-based sparse NMF algorithm (termed as NMF-SMC) is proposed for solving the SU problem, where the learning rate is adaptively selected, and the endmembers and abundances are simultaneously estimated. In the proposed NMF-SMC, there is no pure index assumption and no need to know the exact sparseness degree of the abundance in prior. Yet, it does not require the preprocessing of dimension reduction in which some useful information may be lost. Experiments based on synthetic mixtures and real-world images collected by AVIRIS and HYDICE sensors are performed to evaluate the validity of the proposed method.
IEEE Transactions on Neural Networks | 2012
Shengli Xie; Liu Yang; Jun-Mei Yang; Guoxu Zhou; Yong Xiang
This paper presents a new time-frequency (TF) underdetermined blind source separation approach based on Wigner-Ville distribution (WVD) and Khatri-Rao product to separate N non-stationary sources from M(M <; N) mixtures. First, an improved method is proposed for estimating the mixing matrix, where the negative value of the auto WVD of the sources is fully considered. Then after extracting all the auto-term TF points, the auto WVD value of the sources at every auto-term TF point can be found out exactly with the proposed approach no matter how many active sources there are as long as N ≤ 2M-1. Further discussion about the extraction of auto-term TF points is made and finally the numerical simulation results are presented to show the superiority of the proposed algorithm by comparing it with the existing ones.
IEEE Transactions on Neural Networks | 2011
Guoxu Zhou; Zuyuan Yang; Shengli Xie; Jun-Mei Yang
Online blind source separation (BSS) is proposed to overcome the high computational cost problem, which limits the practical applications of traditional batch BSS algorithms. However, the existing online BSS methods are mainly used to separate independent or uncorrelated sources. Recently, nonnegative matrix factorization (NMF) shows great potential to separate the correlative sources, where some constraints are often imposed to overcome the non-uniqueness of the factorization. In this paper, an incremental NMF with volume constraint is derived and utilized for solving online BSS. The volume constraint to the mixing matrix enhances the identifiability of the sources, while the incremental learning mode reduces the computational cost. The proposed method takes advantage of the natural gradient based multiplication updating rule, and it performs especially well in the recovery of dependent sources. Simulations in BSS for dual-energy X-ray images, online encrypted speech signals, and high correlative face images show the validity of the proposed method.
IEEE Transactions on Neural Networks | 2011
Guoxu Zhou; Shengli Xie; Zuyuan Yang; Jun-Mei Yang; Zhaoshui He
Nonnegative matrix factorization (NMF) with minimum-volume-constraint (MVC) is exploited in this paper. Our results show that MVC can actually improve the sparseness of the results of NMF. This sparseness is L0-norm oriented and can give desirable results even in very weak sparseness situations, thereby leading to the significantly enhanced ability of learning parts of NMF. The close relation between NMF, sparse NMF, and the MVC_NMF is discussed first. Then two algorithms are proposed to solve the MVC_NMF model. One is called quadratic programming_MVC_NMF (QP_MVC_NMF) which is based on quadratic programming and the other is called negative glow_MVC_NMF (NG_MVC_NMF) because it uses multiplicative updates incorporating natural gradient ingeniously. The QP_MVC_NMF algorithm is quite efficient for small-scale problems and the NG_MVC_NMF algorithm is more suitable for large-scale problems. Simulations show the efficiency and validity of the proposed methods in applications of blind source separation and human face images analysis.
IEEE Transactions on Neural Networks | 2011
Guoxu Zhou; Zuyuan Yang; Shengli Xie; Jun-Mei Yang
In blind source separation, many methods have been proposed to estimate the mixing matrix by exploiting sparsity. However, they often need to know the source number a priori, which is very inconvenient in practice. In this paper, a new method, namely nonlinear projection and column masking (NPCM), is proposed to estimate the mixing matrix. A major advantage of NPCM is that it does not need any knowledge of the source number. In NPCM, the objective function is based on a nonlinear projection and its maxima just correspond to the columns of the mixing matrix. Thus a column can be estimated first by locating a maximum and then deflated by a masking operation. This procedure is repeated until the evaluation of the objective function decreases to zero dramatically. Thus the mixing matrix and the number of sources are estimated simultaneously. Because the masking procedure may result in some small and useless local maxima, particle swarm optimization (PSO) is introduced to optimize the objective function. Feasibility and efficiency of PSO are also discussed. Comparative experimental results show the efficiency of NPCM, especially in the cases where the number of sources is unknown and the sources are relatively less sparse.
IEEE Transactions on Neural Networks | 2009
Guoxu Zhou; Shengli Xie; Zuyuan Yang; Jun Zhang
To make the results reasonable, existing joint diagonalization algorithms have imposed a variety of constraints on diagonalizers. Actually, those constraints can be imposed uniformly by minimizing the condition number of diagonalizers. Motivated by this, the approximate joint diagonalization problem is reviewed as a multiobjective optimization problem for the first time. Based on this, a new algorithm for nonorthogonal joint diagonalization is developed. The new algorithm yields diagonalizers which not only minimize the diagonalization error but also have as small condition numbers as possible. Meanwhile, degenerate solutions are avoided strictly. Besides, the new algorithm imposes few restrictions on the target set of matrices to be diagonalized, which makes it widely applicable. Primary results on convergence are presented and we also show that, for exactly jointly diagonalizable sets, no local minima exist and the solutions are unique under mild conditions. Extensive numerical simulations illustrate the performance of the algorithm and provide comparison with other leading diagonalization methods. The practical use of our algorithm is shown for blind source separation (BSS) problems, especially when ill-conditioned mixing matrices are involved.
Sixth International Symposium on Multispectral Image Processing and Pattern Recognition | 2009
Zuyuan Yang; Xi Chen; Guoxu Zhou; Shengli Xie
Spectral unmixing (SU) is a hot topic in remote sensing image interpretation, where the linear mixing model (LMM) is discussed widely for its validity and simplicity [1]. SU often includes two facts as follows: 1) endmembers extraction; 2) abundances estimation. Mathematically, in the SU model, the collections, the endmember signatures, and the abundances are nonnegative [1]. Therefore, nonnegative matrix factorization (NMF) has a great potential to solve SU, especially for LMM [2]. In fact, NMF (or NMF like) algorithms have been widely discussed in SU, such as NMF based on minimum volume constraint (NMF-MVC) [1], NMF based on minimum distance constraint (NMF-MDC) [3], and so on. These methods have advantages and disadvantages, respectively. In light of that the abundances are often sparse and sparse NMF tends to result more determinate factors, NMF with sparseness constraint has attracted more and more attentions [4-6].To solve SU using sparse NMF practically, one problem should be addressed firstly, that is how to select the functions to measure the sparseness feature. Since the abundance suffers from sum-to-one constraint physically, the widely used measure based on L1 norm constraint may be degenerate [7, 8]. As the smoothed L0 norm of the signals can reflect the sparseness intuitively and it is easy to be optimized, we focus on NMF with smoothed L0 norm constraint (NMF-SL0) in this work [9]. The rest of this paper is organized as follows. In Section II, typical SU and NMF models are presented. Section III describes the L0-based sparse NMF for solving SU, together with the gradient based optimization algorithm NMF-SL0. Simulations using synthetic mixtures and real hyperspectral images are presented in Section IV. Finally, conclusions are summarized in Section V.
international conference on intelligent control and information processing | 2010
Zuyuan Yang; Guoxu Zhou; Shuxue Ding; Shengli Xie
Recently, nonnegative matrix factorization (NMF) attracts more and more attentions for the promising of wide applications. A problem that still remains is that, however, the factors resulted from it may not necessarily be realistically interpretable. Some constraints are usually added to the standard NMF to generate such interpretive results. In this paper, a minimum-volume constrained NMF is proposed and an efficient multiplicative update algorithm is developed based on the natural gradient optimization. The proposed method can be applied to the blind source separation (BSS) problem, a hot topic with many potential applications, especially if the sources are mutually dependent. Simulation results of BSS for images show the superiority of the proposed method.
international conference on natural computation | 2009
Zuyuan Yang; Guoxu Zhou; Shengli Xie
In traditional method to blindly extract interesting source signals sequentially, the second-order or higher-order statistics of signals are often utilized. However, for impulsive sources, both of the second-order and higher-order statistics may degenerate. Therefore, it is necessary to exploit new method for the blind extraction of impulsive sources. Based on the best compression-reconstruction principle, a novel model is proposed in this work, together with the corresponding algorithm. The proposed method can be used for blind extraction of sources which are distributed from alpha stable process. Simulations are given to illustrate availability and robustness of our algorithm.
Neural Computation | 2009
Shengli Xie; Guoxu Zhou; Zuyuan Yang; Yuli Fu
This letter discusses blind separability based on temporal predictability (Stone, 2001; Xie, He, & Fu, 2005). Our results show that the sources are separable using the temporal predictability method if and only if they have different temporal structures (i.e., autocorrelations). Consequently, the applicability and limitations of the temporal predictability method are clarified. In addition, instead of using generalized eigendecomposition, we suggest using joint approximate diagonalization algorithms to improve the robustness of the method. A new criterion is presented to evaluate the separation results. Numerical simulations are performed to demonstrate the validity of the theoretical results.