Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guoying Yu is active.

Publication


Featured researches published by Guoying Yu.


Cancer Research | 2007

Glutathione Peroxidase 3, Deleted or Methylated in Prostate Cancer, Suppresses Prostate Cancer Growth and Metastasis

Yan P. Yu; Guoying Yu; George C. Tseng; Kathleen Cieply; Joel B. Nelson; Marie C. DeFrances; Reza Zarnegar; George K. Michalopoulos; Jian-Hua Luo

Glutathione peroxidase 3 is a selenium-dependent enzyme playing a critical role in detoxifying reactive oxidative species and maintaining the genetic integrity of mammalian cells. In this report, we found that the expression of glutathione peroxidase 3 (GPx3) was widely inactivated in prostate cancers. Complete inactivation of GPx3 correlates with a poor clinical outcome. Deletions (hemizygous and homozygous) of GPx3 gene are frequent in prostate cancer samples, occurring in 39% of the samples studied. The rate of methylation of the GPx3 exon 1 region in prostate cancer samples reaches 90%. Overexpression of GPx3 in prostate cancer cell lines induced the suppression of colony formation and anchorage-independent growth of PC3, LNCaP, and Du145 cells. PC3 cells overexpressing GPx3 reduced invasiveness in Matrigel transmigration analysis by an average of 2.7-fold. Xenografted PC3 cells expressing GPx3 showed reduction in tumor volume by 4.8-fold, elimination of metastasis (0/16 versus 7/16), and reduction of animal death (3/16 versus 16/16). The tumor suppressor activity of GPx3 seems to relate to its ability to suppress the expression of c-met. The present findings suggest that GPx3 is a novel tumor suppressor gene.


Oncogene | 2006

MCM7 amplification and overexpression are associated with prostate cancer progression.

Baoguo Ren; Guoying Yu; George C. Tseng; Kathleen Cieply; Tim Gavel; Joel B. Nelson; George K. Michalopoulos; Yan-Ping Yu; Jian-Hua Luo

The genomic DNA profiles of prostate cancers with aggressive features were compared to the profiles of matched normal DNA to identify genes that are selectively amplified in the cancer cells. One of the identified genes, MCM7, which is a component of the DNA replication licensing complex, has been studied extensively both at the DNA and protein levels in human prostate tissues. Approximately half of the prostate cancer specimens studied showed MCM7 gene amplification, and 60% of the aggressive prostate cancer specimens had increased MCM7 protein expression. Amplification or overexpression of MCM7 was significantly associated with relapse, local invasion and a worse tumor grade. Constitutive expression of MCM7 in a human prostate cancer cell line, DU145, resulted in markedly increased DNA synthesis and cell proliferation compared to vector-only controls, and an increased cell invasion in vitro. Indeed, MCM7 overexpression produced primary tumors 12 times larger than vector-only controls and resulted in a rapid demise of mice bearing those tumors. These studies implicate MCM7, and the DNA replication licensing gene family, in prostate cancer progression, growth and invasion.


PLOS ONE | 2012

Global Methylation Patterns in Idiopathic Pulmonary Fibrosis

Einat I. Rabinovich; Maria G. Kapetanaki; Israel Steinfeld; Kevin F. Gibson; Kusum Pandit; Guoying Yu; Zohar Yakhini; Naftali Kaminski

Background Idiopathic Pulmonary Fibrosis (IPF) is characterized by profound changes in the lung phenotype including excessive extracellular matrix deposition, myofibroblast foci, alveolar epithelial cell hyperplasia and extensive remodeling. The role of epigenetic changes in determining the lung phenotype in IPF is unknown. In this study we determine whether IPF lungs exhibit an altered global methylation profile. Methodology/Principal Findings Immunoprecipitated methylated DNA from 12 IPF lungs, 10 lung adenocarcinomas and 10 normal histology lungs was hybridized to Agilent human CpG Islands Microarrays and data analysis was performed using BRB-Array Tools and DAVID Bioinformatics Resources software packages. Array results were validated using the EpiTYPER MassARRAY platform for 3 CpG islands. 625 CpG islands were differentially methylated between IPF and control lungs with an estimated False Discovery Rate less than 5%. The genes associated with the differentially methylated CpG islands are involved in regulation of apoptosis, morphogenesis and cellular biosynthetic processes. The expression of three genes (STK17B, STK3 and HIST1H2AH) with hypomethylated promoters was increased in IPF lungs. Comparison of IPF methylation patterns to lung cancer or control samples, revealed that IPF lungs display an intermediate methylation profile, partly similar to lung cancer and partly similar to control with 402 differentially methylated CpG islands overlapping between IPF and cancer. Despite their similarity to cancer, IPF lungs did not exhibit hypomethylation of long interspersed nuclear element 1 (LINE-1) retrotransposon while lung cancer samples did, suggesting that the global hypomethylation observed in cancer was not typical of IPF. Conclusions/Significance Our results provide evidence that epigenetic changes in IPF are widespread and potentially important. The partial similarity to cancer may signify similar pathogenetic mechanisms while the differences constitute IPF or cancer specific changes. Elucidating the role of these specific changes will potentially allow better understanding of the pathogenesis of IPF.


American Journal of Respiratory Cell and Molecular Biology | 2012

Profibrotic Role of miR-154 in Pulmonary Fibrosis

Jadranka Milosevic; Kusum Pandit; Marcus Magister; Einat I. Rabinovich; Daniel C. Ellwanger; Guoying Yu; Louis J. Vuga; Benny Weksler; Panayiotis V. Benos; Kevin F. Gibson; Michael McMillan; Michael Kahn; Naftali Kaminski

In this study, we explored the regulation and the role of up-regulated microRNAs in idiopathic pulmonary fibrosis (IPF), a progressive interstitial lung disease of unknown origin. We analyzed the expression of microRNAs in IPF lungs and identified 43 significantly up-regulated microRNAs. Twenty-four of the 43 increased microRNAs were localized to the chromosome 14q32 microRNA cluster. We validated the increased expression of miR-154, miR-134, miR-299-5p, miR-410, miR-382, miR-409-3p, miR-487b, miR-31, and miR-127 by quantitative RT-PCR and determined that they were similarly expressed in embryonic lungs. We did not find evidence for differential methylation in this region, but analysis of transcription factor binding sites identified multiple SMAD3-binding elements in the 14q32 microRNA cluster. TGF-β1 stimulation of normal human lung fibroblasts (NHLF) caused up-regulation of microRNAs on chr14q32 that were also increased in IPF lungs. Chromatin immunoprecipitation confirmed binding of SMAD3 to the putative promoter of miR-154. Mir-154 was increased in IPF fibroblasts, and transfection of NHLF with miR-154 caused significant increases in cell proliferation and migration. The increase in proliferation induced by TGF-β was not observed when NHLF or IPF fibroblasts were transfected with a mir-154 inhibitor. Transfection with miR-154 caused activation of the WNT pathway in NHLF. ICG-001 and XAV939, inhibitors of the WNT/β-catenin pathway, reduced the proliferative effect of miR-154. The potential role of miR-154, one of multiple chr14q32 microRNA cluster members up-regulated in IPF and a regulator of fibroblast migration and proliferation, should be further explored in IPF.


Journal of Biological Chemistry | 2009

Oxidative Stress Alters Syndecan-1 Distribution in Lungs with Pulmonary Fibrosis *□

Corrine R. Kliment; Judson M. Englert; Bernadette R. Gochuico; Guoying Yu; Naftali Kaminski; Ivan O. Rosas; Tim D. Oury

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by severe, progressive fibrosis. Roles for inflammation and oxidative stress have recently been demonstrated, but despite advances in understanding the pathogenesis, there are still no effective therapies for IPF. This study investigates how extracellular superoxide dismutase (EC-SOD), a syndecan-binding antioxidant enzyme, inhibits inflammation and lung fibrosis. We hypothesize that EC-SOD protects the lung from oxidant damage by preventing syndecan fragmentation/shedding. Wild-type or EC-SOD-null mice were exposed to an intratracheal instillation of asbestos or bleomycin. Western blot was used to detect syndecans in the bronchoalveolar lavage fluid and lung. Human lung samples (normal and IPF) were also analyzed. Immunohistochemistry for syndecan-1 and EC-SOD was performed on human and mouse lungs. In vitro, alveolar epithelial cells were exposed to oxidative stress and EC-SOD. Cell supernatants were analyzed for shed syndecan-1 by Western blot. Syndecan-1 ectodomain was assessed in wound healing and neutrophil chemotaxis. Increases in human syndecan-1 are detected in lung homogenates and lavage fluid of IPF lungs. Syndecan-1 is also significantly elevated in the lavage fluid of EC-SOD-null mice after asbestos and bleomycin exposure. On IHC, syndecan-1 staining increases within fibrotic areas of human and mouse lungs. In vitro, EC-SOD inhibits oxidant-induced loss of syndecan-1 from A549 cells. Shed and exogenous syndecan-1 ectodomain induce neutrophil chemotaxis, inhibit alveolar epithelial wound healing, and promote fibrogenesis. Oxidative shedding of syndecan-1 is an underlying cause of neutrophil chemotaxis and aberrant wound healing that may contribute to pulmonary fibrosis.


Embo Molecular Medicine | 2014

MicroRNA mimicry blocks pulmonary fibrosis

Rusty L. Montgomery; Guoying Yu; Paul A. Latimer; Christianna Stack; Kathryn Robinson; Christina Dalby; Naftali Kaminski; Eva Van Rooij

Over the last decade, great enthusiasm has evolved for microRNA (miRNA) therapeutics. Part of the excitement stems from the fact that a miRNA often regulates numerous related mRNAs. As such, modulation of a single miRNA allows for parallel regulation of multiple genes involved in a particular disease. While many studies have shown therapeutic efficacy using miRNA inhibitors, efforts to restore or increase the function of a miRNA have been lagging behind. The miR‐29 family has gained a lot of attention for its clear function in tissue fibrosis. This fibroblast‐enriched miRNA family is downregulated in fibrotic diseases which induces a coordinate increase of many extracellular matrix genes. Here, we show that intravenous injection of synthetic RNA duplexes can increase miR‐29 levels in vivo for several days. Moreover, therapeutic delivery of these miR‐29 mimics during bleomycin‐induced pulmonary fibrosis restores endogenous miR‐29 function whereby decreasing collagen expression and blocking and reversing pulmonary fibrosis. Our data support the feasibility of using miRNA mimics to therapeutically increase miRNAs and indicate miR‐29 to be a potent therapeutic miRNA for treating pulmonary fibrosis.


American Journal of Pathology | 2011

Matrix metalloproteinase 3 is a mediator of pulmonary fibrosis.

Cory M. Yamashita; Lior Dolgonos; Rachel L. Zemans; Scott K. Young; Jennifer Robertson; Natalie Briones; Tomoko Suzuki; Megan Campbell; Jack Gauldie; Derek C. Radisky; David W. H. Riches; Guoying Yu; Naftali Kaminski; Christopher A. McCulloch; Gregory P. Downey

Idiopathic pulmonary fibrosis (IPF) may be triggered by epithelial injury that results in aberrant production of growth factors, cytokines, and proteinases, leading to proliferation of myofibroblasts, excess deposition of collagen, and destruction of the lung architecture. The precise mechanisms and key signaling mediators responsible for this aberrant repair process remain unclear. We assessed the importance of matrix metalloproteinase-3 (MMP-3) in the pathogenesis of IPF through i) determination of MMP-3 expression in patients with IPF, ii) in vivo experiments examining the relevance of MMP-3 in experimental models of fibrosis, and iii) in vitro experiments to elucidate possible mechanisms of action. Gene expression analysis, quantitative RT-PCR, and Western blot analysis of explanted human lungs revealed enhanced expression of MMP-3 in IPF, compared with control. Transient adenoviral vector-mediated expression of recombinant MMP-3 in rat lung resulted in accumulation of myofibroblasts and pulmonary fibrosis. Conversely, MMP-3-null mice were protected against bleomycin-induced pulmonary fibrosis. In vitro treatment of cultured lung epithelial cells with purified MMP-3 resulted in activation of the β-catenin signaling pathway, via cleavage of E-cadherin, and induction of epithelial-mesenchymal transition. These processes were inhibited in bleomycin-treated MMP-3-null mice, as assessed by cytosolic translocation of β-catenin and cyclin D1 expression. These observations support a novel role for MMP-3 in the pathogenesis of IPF, through activation of β-catenin signaling and induction of epithelial-mesenchymal transition.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2014

Let-7d microRNA affects mesenchymal phenotypic properties of lung fibroblasts

Luai Huleihel; Ahmi Ben-Yehudah; Jadranka Milosevic; Guoying Yu; Kusum Pandit; Koji Sakamoto; Hanadie Yousef; Megan LeJeune; Tiffany A. Coon; Carrie J. Redinger; Lara Chensny; Ester Manor; Gerald Schatten; Naftali Kaminski

MicroRNAs are small noncoding RNAs that inhibit protein expression. We have previously shown that the inhibition of the microRNA let-7d in epithelial cells caused changes consistent with epithelial-to-mesenchymal transition (EMT) both in vitro and in vivo. The aim of this study was to determine whether the introduction of let-7d into fibroblasts alters their mesenchymal properties. Transfection of primary fibroblasts with let-7d caused a decrease in expression of the mesenchymal markers α-smooth muscle actin, N-cadherin, fibroblast-specific protein-1, and fibronectin, as well as an increase in the epithelial markers tight junction protein-1 and keratin 19. Phenotypic changes were also present, including a delay in wound healing, reduced motility, and proliferation of fibroblasts following transfection. In addition, we examined the effects of transfection on fibroblast responsiveness to TGF-β, an important factor in many fibrotic processes such as lung fibrosis and found that let-7d transfection significantly attenuated high-mobility group-A2 protein induction by TGF-β. Our results indicate that administration of the epithelial microRNA let-7d can significantly alter the phenotype of primary fibroblasts.


American Journal of Respiratory and Critical Care Medicine | 2012

Matrix Metalloproteinase-19 Is a Key Regulator of Lung Fibrosis in Mice and Humans

Guoying Yu; Elisabetha Kovkarova-Naumovski; Anil V. Parwani; Daniel J. Kass; Victor Ruiz; Carlos López-Otín; Ivan O. Rosas; Kevin F. Gibson; Sandra Cabrera; Remedios Ramírez; Samuel A. Yousem; Thomas J. Richards; Lara Chensny; Moisés Selman; Naftali Kaminski; Annie Pardo

RATIONALE Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by epithelial phenotypic changes and fibroblast activation. Based on the temporal heterogeneity of IPF, we hypothesized that hyperplastic alveolar epithelial cells regulate the fibrotic response. OBJECTIVES To identify novel mediators of fibrosis comparing the transcriptional signature of hyperplastic epithelial cells and conserved epithelial cells in the same lung. METHODS Laser capture microscope and microarrays analysis were used to identify differentially expressed genes in IPF lungs. Bleomycin-induced lung fibrosis was evaluated in Mmp19-deficient and wild-type (WT) mice. The role of matrix metalloproteinase (MMP)-19 was additionally studied by transfecting the human MMP19 in alveolar epithelial cells. MEASUREMENTS AND MAIN RESULTS Laser capture microscope followed by microarray analysis revealed a novel mediator, MMP-19, in hyperplastic epithelial cells adjacent to fibrotic regions. Mmp19(-/-) mice showed a significantly increased lung fibrotic response to bleomycin compared with WT mice. A549 epithelial cells transfected with human MMP19 stimulated wound healing and cell migration, whereas silencing MMP19 had the opposite effect. Gene expression microarray of transfected A549 cells showed that PTGS2 (prostaglandin-endoperoxide synthase 2) was one of the highly induced genes. PTGS2 was overexpressed in IPF lungs and colocalized with MMP-19 in hyperplastic epithelial cells. In WT mice, PTGS2 was significantly increased in bronchoalveolar lavage and lung tissues after bleomycin-induced fibrosis, but not in Mmp19(-/-) mice. Inhibition of Mmp-19 by siRNA resulted in inhibition of Ptgs2 at mRNA and protein levels. CONCLUSIONS Up-regulation of MMP19 induced by lung injury may play a protective role in the development of fibrosis through the induction of PTGS2.


Nature Medicine | 2017

Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function

Guoying Yu; Argyris Tzouvelekis; Rong Wang; Jose D. Herazo-Maya; Gabriel Ibarra; Anup Srivastava; Joao Pedro Werneck de Castro; Giuseppe Deiuliis; Farida Ahangari; Tony Woolard; Nachelle Aurelien; Rafael Arrojo e Drigo; Ye Gan; Morven Graham; Xinran Liu; Robert J. Homer; Thomas S. Scanlan; Praveen Mannam; Patty J. Lee; Erica L. Herzog; Antonio C. Bianco; Naftali Kaminski

Thyroid hormone (TH) is critical for the maintenance of cellular homeostasis during stress responses, but its role in lung fibrosis is unknown. Here we found that the activity and expression of iodothyronine deiodinase 2 (DIO2), an enzyme that activates TH, were higher in lungs from patients with idiopathic pulmonary fibrosis than in control individuals and were correlated with disease severity. We also found that Dio2-knockout mice exhibited enhanced bleomycin-induced lung fibrosis. Aerosolized TH delivery increased survival and resolved fibrosis in two models of pulmonary fibrosis in mice (intratracheal bleomycin and inducible TGF-β1). Sobetirome, a TH mimetic, also blunted bleomycin-induced lung fibrosis. After bleomycin-induced injury, TH promoted mitochondrial biogenesis, improved mitochondrial bioenergetics and attenuated mitochondria-regulated apoptosis in alveolar epithelial cells both in vivo and in vitro. TH did not blunt fibrosis in Ppargc1a- or Pink1-knockout mice, suggesting dependence on these pathways. We conclude that the antifibrotic properties of TH are associated with protection of alveolar epithelial cells and restoration of mitochondrial function and that TH may thus represent a potential therapy for pulmonary fibrosis.

Collaboration


Dive into the Guoying Yu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan O. Rosas

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Kusum Pandit

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Lara Chensny

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge