Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guozhen Du is active.

Publication


Featured researches published by Guozhen Du.


Plant and Soil | 2009

Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau

Gao-Lin Wu; Guozhen Du; Zhen-Heng Liu; Simon Thirgood

Grazing is one of the most important factors influencing community structure and productivity in natural grasslands. Fencing to exclude grazers is one of the main management practices used to protect grasslands. Can fencing improve grassland community status by restraining grazing? We conducted a field community study and indoor soil analyses to determine the long-term effects of fencing and grazing on the above-ground community and soil in a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau, NW China. Our results showed that fencing significantly improved above-ground vegetation productivity but reduced plant density and species diversity. Long-term fencing favored the improvement of forage grass functional groups and restrained the development noxious weed functional groups. There were significant positive effects of fencing on below-ground organic matter, total nitrogen, available nitrogen, total phosphorus and available phosphorus. The productivity of grazed meadow showed a weak decrease over time. There were long-term decreasing trends for plant density both in fenced and grazed meadows. Our study suggests that grazing can be considered as a useful management practice to improve species diversity and plant density in long-term fenced grasslands and that periodic grazing and fencing is beneficial in grassland management.


New Phytologist | 2012

Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem

Yongjun Liu; Guoxi Shi; Lin Mao; Gang Cheng; Shengjing Jiang; Xiaojun Ma; Lizhe An; Guozhen Du; Nancy Collins Johnson; Huyuan Feng

We measured the influences of soil fertility and plant community composition on Glomeromycota, and tested the prediction of the functional equilibrium hypothesis that increased availability of soil resources will reduce the abundance of arbuscular mycorrhizal (AM) fungi. Communities of plants and AM fungi were measured in mixed roots and in Elymus nutans roots across an experimental fertilization gradient in an alpine meadow on the Tibetan Plateau. As predicted, fertilization reduced the abundance of Glomeromycota as well as the species richness of plants and AM fungi. The response of the glomeromycotan community was strongly linked to the plant community shift towards dominance by Elymus nutans. A reduction in the extraradical hyphae of AM fungi was associated with both the changes in soil factors and shifts in the plant community composition that were caused by fertilization. Our findings highlight the importance of soil fertility in regulating both plant and glomeromycotan communities, and emphasize that high fertilizer inputs can reduce the biodiversity of plants and AM fungi, and influence the sustainability of ecosystems.


PLOS ONE | 2013

Regional Contingencies in the Relationship between Aboveground Biomass and Litter in the World's Grasslands

Lydia R. O’Halloran; Elizabeth T. Borer; Eric W. Seabloom; Andrew S. MacDougall; Elsa E. Cleland; Rebecca L. McCulley; Sarah E. Hobbie; W. Stan Harpole; Nicole M. DeCrappeo; Chengjin Chu; Jonathan D. Bakker; Kendi F. Davies; Guozhen Du; Jennifer Firn; Nicole Hagenah; Kirsten S. Hofmockel; Johannes M. H. Knops; Wei Li; Brett A. Melbourne; John W. Morgan; John L. Orrock; Suzanne M. Prober; Carly J. Stevens

Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a single vegetation type across multiple regions, obfuscating the drivers and generality of the association between production and decomposition. Furthermore, our understanding of the relationships between production and decomposition rests heavily on separate meta-analyses of each response, because no studies have simultaneously measured production and the accumulation or decomposition of litter using consistent methods at globally relevant scales. Here, we use a multi-country grassland dataset collected using a standardized protocol to show that live plant biomass (an estimate of aboveground net primary production) and litter disappearance (represented by mass loss of aboveground litter) do not strongly covary. Live biomass and litter disappearance varied at different spatial scales. There was substantial variation in live biomass among continents, sites and plots whereas among continent differences accounted for most of the variation in litter disappearance rates. Although there were strong associations among aboveground biomass, litter disappearance and climatic factors in some regions (e.g. U.S. Great Plains), these relationships were inconsistent within and among the regions represented by this study. These results highlight the importance of replication among regions and continents when characterizing the correlations between ecosystem processes and interpreting their global-scale implications for carbon flux. We must exercise caution in parameterizing litter decomposition and aboveground production in future regional and global carbon models as their relationship is complex.


Nature plants | 2015

Grassland productivity limited by multiple nutrients

Philip A. Fay; Suzanne M. Prober; W. Stanley Harpole; Johannes M. H. Knops; Jonathan D. Bakker; Elizabeth T. Borer; Eric M. Lind; Andrew S. MacDougall; Eric W. Seabloom; Peter D. Wragg; Peter B. Adler; Dana M. Blumenthal; Yvonne M. Buckley; Chengjin Chu; Elsa E. Cleland; Scott L. Collins; Kendi F. Davies; Guozhen Du; Xiaohui Feng; Jennifer Firn; Daniel S. Gruner; Nicole Hagenah; Yann Hautier; Robert W. Heckman; Virginia L. Jin; Kevin P. Kirkman; Julia A. Klein; Laura M. Ladwig; Qi Li; Rebecca L. McCulley

Terrestrial ecosystem productivity is widely accepted to be nutrient limited1. Although nitrogen (N) is deemed a key determinant of aboveground net primary production (ANPP)2,3, the prevalence of co-limitation by N and phosphorus (P) is increasingly recognized4–8. However, the extent to which terrestrial productivity is co-limited by nutrients other than N and P has remained unclear. Here, we report results from a standardized factorial nutrient addition experiment, in which we added N, P and potassium (K) combined with a selection of micronutrients (K+μ), alone or in concert, to 42 grassland sites spanning five continents, and monitored ANPP. Nutrient availability limited productivity at 31 of the 42 grassland sites. And pairwise combinations of N, P, and K+μ co-limited ANPP at 29 of the sites. Nitrogen limitation peaked in cool, high latitude sites. Our findings highlight the importance of less studied nutrients, such as K and micronutrients, for grassland productivity, and point to significant variations in the type and degree of nutrient limitation. We suggest that multiple-nutrient constraints must be considered when assessing the ecosystem-scale consequences of nutrient enrichment.


Plant Ecology | 2007

Seed mass and germination in an alpine meadow on the eastern Tsinghai-Tibet plateau

Haiyan Bu; Xuelin Chen; Xiuli Xu; Kun Liu; Peng Jia; Guozhen Du

In this study, we built up a database of 570 species from an alpine meadow on the eastern Tsinghai–Tibet plateau. We examined the correlation of seed mass and germination with phylogeny, habitat and altitude, and the relationship between seed mass and germination. We found that: habitats had no significant effects on seed mass and germinability, which was in accord with the former studies; there was a significant negative correlation between seed mass and altitude, as well as between germinability and altitude, which was opposite to most of the former studies; there was a significant negative correlation between seed mass and germinability, which was in contrast with other studies that have found a positive relationship, and seed mass could explain 24.1% of total variation in germinability; in GLM, family and genus accounted for 43.9% and 83.9% of total variation in seed mass, and 34.1% and 65.4% in germinability, respectively, thus, it was evident that seed mass and germinability were strongly related to phylogeny. We considered that seed mass and germination might be the result of both selective pressures over long-term ecological time and the constraints over long-standing evolutionary history of the taxonomic membership. We suggest that correlates of ecology and phylogeny should be taken into account in comparative studies on seed mass and germination among species.


Plant Ecology | 2008

Community-wide germination strategies in an alpine meadow on the eastern Qinghai-Tibet plateau: phylogenetic and life-history correlates

Haiyan Bu; Guozhen Du; Xuelin Chen; Xiuli Xu; Kun Liu; Shujun Wen

In this study, we built up a database of 633 species (48 families, 205 genera) from an alpine meadow on the eastern Qinghai-Tibet plateau. Our objective was to assess the effects of phylogenetic and life-history (life form, perenniality, seed size, dispersal strategy and period) background on the community-wide germination strategies. We found that the seeds of shrubs, perennials, and well-dispersed plants, and the smaller seeds germinated more and comparatively earlier. In one-way ANOVAs, phylogenetic groups explained 12% of the variance in GT (mean germination time for all seeds germinated of each species); life-history attributes, such as seed size, dispersal strategy, perenniality and life form explained 10%, 7%, 5%, and 1% respectively, and dispersal period had no significant effect on GT. Multifactorial ANOVAs revealed that the three major factors contributing to differences in GT were phylogenetic relatedness, seed size and dispersal strategy (explained 4%, 5% and 4% of the interspecific variation independently, respectively). Thus, seeds germination strategies were significantly correlated with phylogenetic and life-history relatedness. In addition, phylogenetic relatedness had close associations and interactions with seed size and dispersal strategy. Then, we think phylogeny and life-history attributes could not be considered mutual exclusively. Seed germination, like any other trait, is shaped by the natural history of the species and by the evolutionary history of the lineage. And a large percentage of the variance remained unexplained by our model, which suggested important selective factors or parameters may have been left out of this analysis.


Plant and Soil | 2010

Seasonal dynamics in alpine meadow seed banksalong an altitudinal gradient on the Tibetan Plateau

Miaojun Ma; Xianhui Zhou; Gang Wang; Zhen Ma; Guozhen Du

We studied seasonal dynamics of seed banks along an altitudinal gradient in three alpine meadows on the Tibetan Plateau, as well as seed size distribution relative to depth. Seed bank density and species richness decreased significantly with altitude increase in both April and July. The highest elevations showed highest seed bank depletion. Although species composition of the vegetation changed along the altitudinal gradient, seed bank composition was almost unvaried from April to July. This indicated that seed bank density has an obvious seasonal change but composition does not. We found a low degree of similarity between the species composition of vegetation and of the seed bank along the whole gradient, and this similarity decreased with altitude increase. These suggest that the role of the seed bank decreased gradually with altitude increase. The hypothesis that a species seed bank strategy is an inherited trait was not confirmed because for some species seed bank strategy changed with altitude. We found that persistent seed banks were the most frequent strategy at all three altitudes. Species with persistent seeds tended to have smaller seeds than those with transient seeds only in highest altitude, while the other two altitudes did not show difference. There was no trend in seed size distribution with altitudes and soil depths.


PLOS ONE | 2013

Effect of Diurnal Fluctuating versus Constant Temperatures on Germination of 445 Species from the Eastern Tibet Plateau

Kun Liu; Jerry M. Baskin; Carol C. Baskin; Haiyan Bu; Guozhen Du; Miaojun Ma

Germination response to fluctuating temperatures is a mechanism by which seeds detect gaps in vegetation canopies and depth of burial in soil, and it is very important for plants. Thus, studies on the effect of fluctuating temperature on germination at the community level are valuable for understanding community structure and biodiversity maintenance. We determined the effects of two alternating temperatures (5/25°C and 10/20°C) and one constant temperature (15°C) on seed germination of 445 species in a grassland community on the eastern Tibet Plateau. Seed mass was determined for each species, and data on habitat, type of life cycle, altitudinal distribution and functional group (graminoids or forbs) were obtained from the literature. Taking all species into account, alternating temperatures increased germination percentages regardless of amplitude. Overall, species growing in disturbed ground showed a significant germination response to temperature fluctuation, but those living in Alpine/subalpine meadow, forest margin /scrub, marshland and dry sunny slope habitats did not. Species distributed only at high elevations (>2000m) did not show a significant germination response to temperature fluctuation, whereas those occurring at both high and low elevations had a significant positive response. Germination of annuals/biennials was significantly promoted by 5/25°C, but not by 10/20°C, whereas germination of perennials was significantly promoted by both 5/25°C and 10/20°C. Small-seeded species were more likely than large-seeded species to respond positively to fluctuating temperatures. Germination of forbs had a positive response to temperature fluctuation, but germination of graminoids did not. Regeneration ability by seeds for about 36% of the species studied in the grassland can be increased by temperature fluctuation. The differential response among species to alternating vs. constant temperatures helps maintain community structure and biodiversity. A positive germination response to temperature fluctuation can partly explain why there are more forbs in degraded meadows.


Plant and Soil | 2011

Soil seed bank dynamics in alpine wetland succession on the Tibetan Plateau

Miaojun Ma; Xianhui Zhou; Guozhen Du

The primary goal was to address several questions with regard to how soil seed banks change in a successional series. How does the composition of the viable seed bank change, and how does the relationship of the soil seed bank and vegetation change with succession? Can the seed bank be regarded as a potential as a source of seeds for wetland restoration? We collected soil seed bank samples and sampled the vegetation in four different successional stages and used the NMDS (nonmetric multidimensional scaling) to evaluate the relationship of species composition between the seed banks and vegetation. The difference of seed density and species richness in different habitats and soil depths also was compared. Viable seeds of half (37) the species in the early-successional stage were found in all the successional stages. Similarity between seed bank and vegetation increased with succession. Both seed density and species richness in the seed bank increased with successional age and decreased with soil depth. The majority of species from the early-successional stage produced long-lived seeds. Seed density and species richness increased with succession, mainly as a result of increasing seed production, and hypotheses predicting decreasing density of buried seeds and species richness were not confirmed. Seed banks play a minor role in contributing to the regeneration of vegetation, and managers cannot rely on soil-stored seed banks for restoration of wetlands.


American Journal of Botany | 2011

Effect of storage conditions on germination of seeds of 489 species from high elevation grasslands of the eastern Tibet Plateau and some implications for climate change

Kun Liu; Jerry M. Baskin; Carol C. Baskin; Haiyan Bu; Mingxia Liu; Wei Liu; Guozhen Du

PREMISE OF THE STUDY Little is known about the effect of environmental conditions on seed dormancy break at the community level or how it could be affected by climate change. This study tested the effects of storage conditions on germination of 489 species from high-elevation natural grasslands on the Tibet Plateau. METHODS We stored seeds in dry cold, dry warm, and wet cold environments to test the effect of these conditions on germination. Germination responses were classified with the use of cluster analysis. The effect of phylogeny on germination response to storage conditions was determined. KEY RESULTS Compared with results of wet cold conditions, storing seeds at dry warm or dry cold conditions decreased the mean community germination percentage by 17.93% and 16.07%, respectively. Storing seeds at dry warm vs. dry cold conditions decreased the community mean germination percentage by 4.61%. The germination response to moisture conditions during storage showed significant phylogenetic patterns, whereas the germination response to storage temperature did not. On the basis of the germinability of seeds of the same species stored under different conditions, germination may increase, decrease, or stay the same. CONCLUSIONS Within the high-elevation Tibetan grassland community, the different responses in dormancy breaking and germination behavior to the same storage conditions may have implications for understanding how this community might respond to climate change. In particular, some species may increase in the community, whereas others may decrease or remain the same. However, the potential for such change can be detected only by studying the responses of many species.

Collaboration


Dive into the Guozhen Du's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chunhui Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhen Ma

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge