Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gürer G. Budak is active.

Publication


Featured researches published by Gürer G. Budak.


Biomedical Microdevices | 2008

Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells

Yu Zhang; Mo Yang; Nathaniel G. Portney; Daxiang Cui; Gürer G. Budak; Ekmel Ozbay; Mihrimah Ozkan; Cengiz S. Ozkan

We demonstrate the use of surface Zeta potential measurements as a new tool to investigate the interactions of iron oxide nanoparticles and cowpea mosaic virus (CPMV) nanoparticles with human normal breast epithelial cells (MCF10A) and cancer breast epithelial cells (MCF7) respectively. A substantial understanding in the interaction of nanoparticles with normal and cancer cells in vitro will enable the capabilities of improving diagnostic and treatment methods in cancer research, such as imaging and targeted drug delivery. A theoretical Zeta potential model is first established to show the effects of binding process and internalization process during the nanoparticle uptake by cells and the possible trends of Zeta potential change is predicted for different cell endocytosis capacities. The corresponding changes of total surface charge of cells in the form of Zeta potential measurements were then reported after incubated respectively with iron oxide nanoparticles and CPMV nanoparticles. As observed, after MCF7 and MCF10A cells were incubated respectively with two types of nanoparticles, the significant differences in their surface charge change indicate the potential role of Zeta potential as a valuable biological signature in studying the cellular interaction of nanoparticles, as well as specific cell functionality.


Journal of Colloid and Interface Science | 2010

Size controlled synthesis of sub-100 nm monodisperse poly(methylmethacrylate) nanoparticles using surfactant-free emulsion polymerization.

Sevket Tolga Camli; Fatih Buyukserin; Oguz Balci; Gürer G. Budak

Surfactant-free emulsion polymerization (SFEP) is a well-known technique for the production of polymeric nanoparticles that does not require post-synthetic cleaning steps. Obtaining hydrophobic particles at sub-100 nm scale, however, is quite challenging with this polymerization method. Here, we demonstrate a single step synthetic approach that yields poly(methylmethacrylate) (PMMA) nanoparticles with controlled sub-100 nm size and relatively high resultant solid content. Dynamic light scattering (DLS) was used for the particle characterization. Spherical and uniformly sized nanoparticles were confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Acetone was used as a cosolvent in order to obtain monodisperse sub-100 nm diameter particles. Stable PMMA nanoparticle dispersions were obtained for all formulations where the persulfate initiator causes the negative charges on the particle surface. The effects of acetone, monomer and initiator concentration were studied to optimize average particle hydrodynamic diameter and polydispersity index of the final particles. Non-crosslinked monodisperse PMMA nanoparticles (polydispersity index less than 0.05) with diameters from 32 nm to 72 nm were synthesized by using this method.


Journal of Colloid and Interface Science | 2011

Novel antifouling oligo(ethylene glycol) methacrylate particles via surfactant-free emulsion polymerization.

Fatih Buyukserin; Sevket Tolga Camli; Mustafa Selman Yavuz; Gürer G. Budak

The use of particle formulations with antifouling surface properties attracts increasing interest in several biotechnological applications. Majority of these studies utilize a poly(ethylene glycol) coating to render the corresponding surface nonrecognizable to biological macromolecules. Herein, we report a simple way to prepare novel antifouling colloids composed of oligo(ethylene glycol) backbones via surfactant-free emulsion polymerization. Monodisperse cross-linked poly(ethylene glycol) ethyl ether methacrylate particles were characterized by dynamic light scattering and transmission electron microscopy. The effects of monomer, cross-linker and initiator on particle characteristics were investigated. More importantly, a prominent blockage of bovine serum albumin adsorption was obtained for the poly(ethylene glycol)-based sub-micron (~200 nm) particles when compared with similar-sized poly(methyl methacrylate) counterparts.


International Journal of Pediatric Otorhinolaryngology | 2009

Effects of intrauterine and extrauterine exposure to GSM-like radiofrequency on distortion product otoacoustic emissions in infant male rabbits.

Gürer G. Budak; Nuray Bayar Muluk; Bilgehan Budak; Göknur Güler Öztürk; Alpaslan Apan; Nesrin Seyhan

OBJECTIVES The aim of this study was to investigate the potential hazardous effects of intrauterine (IU) and/or extrauterine (EU) exposure to 1800 MHz Global System for Mobile Communications-like (GSM-like) radiofrequency (RF) on the cochlear functions of infant rabbits by measuring distortion product otoacoustic emission (DPOAE) response amplitudes. METHODS Thirty-six white infant male New Zealand rabbits each 1-month-old were included in the study. The animals were randomly divided into four groups. Nine infant rabbits (Group 1) were not exposed to 1800 MHz GSM-like RF (Control-C). Nine infant rabbits (Group 2) were exposed to 1800 MHz GSM-like RF, 15 min daily for 14 days after they reached 1-month of age (extrauterine-EU). Nine infant rabbits (Group 3) were exposed to 1800 MHz GSM-like RF, 15 min daily for 7 days in the intrauterine period (between 15th and 22nd days of the gestational period) (intrauterine-IU). Nine infant rabbits (Group 4) were exposed to 1800 MHz GSM-like RF, 15 min daily for 7 days in the intrauterine period (between 15th and 22nd days of the gestational period) and 15 min daily for 14 days after they reached to 1-month of age (IU+EU). The cochlear functions were assessed by DPOAEs at 1.0-8.0 kHz. RESULTS At 1.5 kHz, the mean DPOAE amplitude of Group 3 was higher than that of the controls and Group 2; and the mean DPOAE value of Group 4 was higher than that of the controls and Group 2. At 2.0 kHz, the mean DPOAE amplitude of Group 4 was higher than that of Group 2. At 3.0 kHz, the mean DPOAE amplitude of Group 4 was higher than that of the controls and Group 2. At 4.0 kHz, the mean DPOAE amplitude of Group 2 was lower than that of the controls, while the mean value of Group 4 was higher than the mean value of the controls and Group 2. At 6.0 kHz, the mean DPOAE amplitude of Group 2 was lower than that of the control group; however, the mean value of Group 4 was higher than that of Group 2. At 1.0 and 8.0 kHz, no significant differences were found among the four groups. CONCLUSION Prolonged exposure and hyperthermia related to the power density of applied RF, increasing the temperature in the ear canal, may affect DPOAE amplitudes. Harmful effects of RF are mainly observed as a decrease in DPOAE amplitudes at 4.0-6.0 kHz during extrauterine exposure in infancy. During the intrauterine period, the water content of the middle and inner ear and amnion fluid may play a protective role. Therefore, children must be protected from RF exposure. The use of mobile phones at short distances from the ear of the infants should be avoided because of the lower thickness of the anatomical structure in infancy.


Auris Nasus Larynx | 2009

Effects of extremely low frequency electromagnetic fields on distortion product otoacoustic emissions in rabbits

Bilgehan Budak; Gürer G. Budak; Göknur Güler Öztürk; Nuray Bayar Muluk; Alpaslan Apan; Nesrin Seyhan

OBJECTIVE Humans are continuously exposed to extremely low frequency (ELF), electromagnetic fields (EMF), transmitted from the common sources like power stations, electric transmission lines, communication and radio-television signal transmission units. The present study aimed to assess the effects of 50 Hz ELF-EMF of 5.068 and 10.182 kV/m electric fields, which refer to the lower and upper intensity limits beyond which hazardous effects can be observed, on the auditory functions of rabbits via Distortion Product Otoacoustic Emission (DPOAE) recordings. METHODS The study was performed on 20 healthy adult female New Zealand White rabbits randomly divided into two groups and applied 50 Hz ELF-EMF with either 5.068 kV/m (Group 1) or 10.182 kV/m (Group 2) of electric field for 3h/day during 14 days. DPOAE responses recorded on the 0th day before exposure (B-EMF) and on the 6th (A-EMF-6th) and 14th (A-EMF-14th) days after exposure (AE). Mean stimulus intensity and emission amplitudes at 1.0-8.0 kHz were analyzed. RESULTS In Group 2 rabbits, on 6th and 14th days, the DPOAE amplitudes were observed as increased at 1.5-4.0 kHz (at 2.0 and 4.0 kHz significantly) than B-EMF values. At 6.0 kHz, A-EMF-14th amplitudes were significantly lower than A-EMF values. CONCLUSION These results suggest that ELF EMFs might affect hearing functions by frequency dependent manner. Higher ELF EMFs exposure caused increase of cochlear activity. Ototoxic effect of 10.182 kV/m ELF EMFs may begin at the basal turn of the cochlea by reducing DPOAEs at high frequencies.


International Journal of Pediatric Otorhinolaryngology | 2009

Effects of extremely low frequency electromagnetic fields on transient evoked otoacoustic emissions in rabbits.

Gürer G. Budak; Bilgehan Budak; Göknur Güler Öztürk; Nuray Bayar Muluk; Alpaslan Apan; Nesrin Seyhan

OBJECTIVE Humans are continuously exposed to an extremely low frequency (ELF) of electromagnetic fields (EMF), transmitted from the common sources like power stations, electric transmission lines, communication and radio-television signal transmission units. The present study aimed to assess the effects of 5.068 kV/m and 10.182 kV/m electric fields, which refer to the lower and upper intensity limits beyond which hazardous effects can be observed, on the auditory functions of rabbits via transient evoked otoacoustic emission (TEOAE) recordings. METHODS The study was performed on 20 healthy adult female New Zealand White rabbits randomly divided into two groups and applied either 5.068 kV/m (Group 1) or 10.182 kV/m (Group 2) of electric field for 3h/day for 14 days. TEOAE responses were recorded on day 0 before the exposure (0-BE) and on the 6th (6th-AE) and 14th (14th-AE) days after the exposure (AE). Emission amplitudes at 1.0-4.0 kHz were analyzed. RESULTS In Groups 1 and 2, the amplitudes separately recorded on the 6th-AE day were not different from the amplitudes recorded on day 0-BE. On the 6th-AE day, the only significant difference was detected in the right ear recordings of Group 1 at the frequency of 1.5 kHz (p=0.007). In Group 1, at 1.5 kHz, the median 6th day AE value (3.8 dB SPL) for the right ear was significantly lower than the median BE value. No significant difference in terms of amplitudes was detected in the comparison of 14th day AE with day 0-BE recordings. In the comparison of the groups for the recordings obtained at all the time points, no statistically significant differences were found. CONCLUSION It was concluded that the TEOAE decrease at 1.5 kHz of the right ears of Group 1 on the 6th day AE was transient; and on the 14th day AE, no significant decrease was determined in the TEOAEs of both groups. Our results showed that the ELF EMFs have no significant effects on the hearing sensation of rabbits, the cochlear functions of whose were evaluated using TEOAE recordings.


International Journal of Pediatric Otorhinolaryngology | 2009

Effects of GSM-like Radiofrequency on distortion product otoacoustic emissions of rabbits: Comparison of infants versus adults

Gürer G. Budak; Nuray Bayar Muluk; Bilgehan Budak; Göknur Güler Öztürk; Alpaslan Apan; Nesrin Seyhan

OBJECTIVES The aim of this study is to investigate the potential hazardous effects of 1800 MHz Global System for Mobile Communications-like (GSM-like) Radiofrequency (RF) exposure on the cochlear functions of female infant and adult rabbits by measuring Distortion Product Otoacoustic Emission (DPOAE) response amplitudes. METHODS Eighteen each one-month-old New Zealand White female rabbits and eighteen each 13-month-old adult rabbits were included into the study. They were randomly divided into four groups. Nine infant rabbits (Group 1) were not exposed to 1800 MHz GSM-like RF (Infant Control, C-In). Nine infant rabbits (Group 2) were exposed to 1800 MHz GSM-like RF, 15 min daily for 7 days after they reached one-month of age (Infant RF, RF-In). Nine adult rabbits were not exposed to 1800 MHz GSM-like RF, 15 min daily for 7 (Adult Control, C-Ad). Nine adult rabbits were exposed to 1800 MHz GSM-like RF, 15 min daily for 7 days (Adult RF, RF-Ad). Cochlear functions were assessed by DPOAEs at 1.0-8.0 kHz. RESULTS At 1.0-2.0 and 6.0 kHz, the mean DPOAE values of Group 2 were significantly higher than that of Group 1. At 3.0-8.0 kHz, the mean DPOAE values of Group 4 were significantly lower than that of Group 1. At 6.0-8.0 kHz, the mean DPOAE values of Group 2 were significantly higher than that of Group 3. At 1.0-8.0 kHz, the mean DPOAE values of Group 4 were significantly lower than that of Group 2. At 1.0-8.0 kHz, the mean DPOAE values of Group 4 were significantly lower than that of Group 3. CONCLUSION Harmful effects of GSM-like 1800 MHz RF exposure was detected more in the adult female rabbits than infant female rabbits by DPOAE measurement. Prolonged exposure and hyperthermia related to the power density of applied RFR, increasing the temperature in the ear canal, may decrease the DPOAE amplitudes. Water containing medium in the middle ear of infant rabbits may play the protective role **from the RF damage.


Archive | 2010

Hybrid Single Walled Carbon Nanotube FETs for High Fidelity DNA Detection

Xu Wang; Mihri Ozkan; Gürer G. Budak; Ziya B. Güvenç; Cengiz S. Ozkan

A novel application for detecting specific biomolecules using SWNT-ssDNA nanohybrid is described. SWNT-ssDNA hybrid is formed by conjugating amino-ended single strand of DNA (ssDNA) with carboxylic group modified SWNTs through a straightforward EDC coupling reaction. ssDNA functionalized SWNT hybrids could be used as high fidelity sensors for biomolecules. The sensing capability is demonstrated by the change in the electronic properties of SWNT. Employing DNA functionalized SWNT FETs could lead to dramatically increased sensitivity in biochemical sensing and medical diagnostics applications.


Archive | 2013

Nanomedicine and the Nose

Gürer G. Budak; Cengiz S. Ozkan; Mihrimah Ozkan

Nanomedicine is defined as the application of nanotechnology to achieve breakthroughs in healthcare. It exploits the improved and often novel physical, chemical, and biological properties of materials at the nanometer scale. Nanomedicine has the potential to enable early detection and prevention and to essentially improve diagnosis, treatment, and follow-up of nose diseases.


Journal of Biophotonics | 2011

Analysis of light scattering from human breast tissue using a custom dual-optical scanning near-field optical microscope

Jennifer Reiber Kyle; Michael D. Kyle; Ravi Raghavan; Gürer G. Budak; Cengiz S. Ozkan; Mihrimah Ozkan

In this paper we introduce a custom scanning near-field optical microscope (SNOM) that simultaneously collects reflection and transmission near-field images along with topography. This dual-optical SNOM uses a bent probe, which allows for axial reflection imaging, accurate surface scanning, and easy identification of topographic artifacts. Using this novel dual-optical SNOM, we image desiccated and non-desiccated human breast epithelial tissue. By comparing the simultaneous SNOM images, we isolate the effects of tissue morphology and variations in refractive indices on the forward- and back-scattering of light from the tissue. We find that the reduction in back-scattering from tissue, relative to the glass slide, is caused by dense packing of the scattering sites in the cytoplasm (morphology) in the desiccated tissue and a thin-film of water adhering to the glass slide (refractive index) in the non-desiccated tissue sample. Our work demonstrates the potential of our customized dual-optical SNOM system for label-free tissue diagnostics.

Collaboration


Dive into the Gürer G. Budak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mihrimah Ozkan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Zhang

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge