Gurjit S. Sidhu
University of Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gurjit S. Sidhu.
The EMBO Journal | 2007
Russell L. During; Bruce G Gibson; Wei Li; Ellen Bishai; Gurjit S. Sidhu; Jacques Landry; Frederick S. Southwick
Inhalation of anthrax causes fatal bacteremia, indicating a meager host immune response. We previously showed that anthrax lethal toxin (LT) paralyzes neutrophils, a major component of innate immunity. Here, we have found that LT also inhibits actin‐based motility of the intracellular pathogen Listeria monocytogenes. LT inhibition of actin assembly is mediated by blockade of Hsp27 phosphorylation, and can be reproduced by treating cells with the p38 mitogen‐activated protein (MAP) kinase inhibitor SB203580. Nonphosphorylated Hsp27 inhibits Listeria actin‐based motility in cell extracts, and binds to and sequesters purified actin monomers. Phosphorylation of Hsp27 reverses these effects. RNA interference knockdown of Hsp27 blocks LT inhibition of Listeria actin‐based motility. Rescue with wild‐type Hsp27 accelerates Listeria speed in knockdown cells, whereas introduction of Hsp27 mutants incapable of phosphorylation or dephosphorylation causes slowing down. We propose that Hsp27 facilitates actin‐based motility through a phosphorylation cycle that shuttles actin monomers to regions of new actin filament assembly. Our findings provide a previously unappreciated mechanism for LT virulence, and emphasize a central role for p38 MAP kinase‐mediated phosphorylation of Hsp27 in actin‐based motility and innate immunity.
Journal of Biological Chemistry | 2004
Lisa Y. Zhao; Jilin Liu; Gurjit S. Sidhu; Yuxin Niu; Yue Liu; Ruipeng Wang; Daiqing Liao
In normal cells p53 activity is tightly controlled and MDM2 is a known negative regulator. Here we show that via its acidic domain, Daxx binds to the COOH-terminal domain of p53, whose positive charges are critical for this interaction, as Lys to Arg mutations preserved, but Lys to Ala or Ser to Glu mutations abolished Daxx-p53 interaction. These results thus implicate acetylation and phosphorylation of p53 in regulating its binding to Daxx. Interestingly, whereas Daxx did not bind to p53 in cells as assessed by immunoprecipitation, MDM2 expression restored p53-Daxx interaction, and this correlated with deacetylation of p53. In p53/MDM2-null mouse embryonic fibroblasts (DKO MEF), Daxx repressed p53 target promoters whose p53-binding elements were required for the repression. Coexpression of Daxx and MDM2 led to further repression. p53 expression in DKO MEF induced apoptosis and Daxx expression relieved this effect. Similarly, in HCT116 cells, Daxx conferred striking resistance to 5-fluorouracil-induced apoptosis. As p53 is required for 5-fluorouracil-induced cell death, our data show that Daxx can suppress cell death induced by p53 overexpression and p53-dependent stress response. Collectively, our data reveal Daxx as a novel negative regulator of p53. Importantly, posttranslational modifications of p53 inhibit Daxx-p53 interaction, thereby relieving negative regulation of p53 by Daxx.
Cellular Microbiology | 2013
Ellen Bishai; Gurjit S. Sidhu; Wei Li; Jess Dhillon; Aparna B. Bohil; Richard E. Cheney; John H. Hartwig; Frederick S. Southwick
The intracellular pathogen Shigella flexneri forms membrane protrusions to spread from cell to cell. As protrusions form, myosin‐X (Myo10) localizes to Shigella. Electron micrographs of immunogold‐labelled Shigella‐infected HeLa cells reveal that Myo10 concentrates at the bases and along the sides of bacteria within membrane protrusions. Time‐lapse video microscopy shows that a full‐length Myo10 GFP‐construct cycles along the sides of Shigella within the membrane protrusions as these structures progressively lengthen. RNAi knock‐down of Myo10 is associated with shorter protrusions with thicker stalks, and causes a >80% decrease in confluent cell plaque formation. Myo10 also concentrates in membrane protrusions formed by another intracellular bacteria, Listeria, and knock‐down of Myo10 also impairs Listeria plaque formation. In Cos7 cells (contain low concentrations of Myo10), the expression of full‐length Myo10 nearly doubles Shigella‐induced protrusion length, and lengthening requires the head domain, as well as the tail‐PH domain, but not the FERM domain. The GFP‐Myo10‐HMM domain localizes to the sides of Shigella within membrane protrusions and the GFP‐Myo10‐PH domain localizes to host cell membranes. We conclude thatMyo10 generates the force to enhance bacterial‐induced protrusions by binding its head region to actin filaments and its PH tail domain to the peripheral membrane.
The EMBO Journal | 2006
Y Zhang; Sergey M. Vorobiev; Bruce G Gibson; Binghua Hao; Gurjit S. Sidhu; Vishnu S. Mishra; Elena G. Yarmola; Michael R. Bubb; Steven C. Almo; Frederick S. Southwick
CapG is the only member of the gelsolin family unable to sever actin filaments. Changing amino acids 84–91 (severing domain) and 124–137 (WH2‐containing segment) simultaneously to the sequences of gelsolin results in a mutant, CapG‐sev, capable of severing actin filaments. The gain of severing function does not alter actin filament capping, but is accompanied by a higher affinity for monomeric actin, and the capacity to bind and sequester two actin monomers. Analysis of CapG‐sev crystal structure suggests a more loosely folded inactive conformation than gelsolin, with a shorter S1–S2 latch. Calcium binding to S1 opens this latch and S1 becomes separated from a closely interfaced S2–S3 complex by an extended arm consisting of amino acids 118–137. Modeling with F‐actin predicts that the length of this WH2‐containing arm is critical for severing function, and the addition of a single amino acid (alanine or histidine) eliminates CapG‐sev severing activity, confirming this prediction. We conclude that efficient severing utilizes two actin monomer‐binding sites, and that the length of the WH2‐containing segment is a critical functional determinant for severing.
BMC Immunology | 2012
Kassidy M. Chauncey; M. Cecilia Lopez; Gurjit S. Sidhu; Sarah E. Szarowicz; Henry V. Baker; Conrad P. Quinn; Frederick S. Southwick
BackgroundAnthrax lethal toxin (LT), produced by the Gram-positive bacterium Bacillus anthracis, is a highly effective zinc dependent metalloprotease that cleaves the N-terminus of mitogen-activated protein kinase kinases (MAPKK or MEKs) and is known to play a role in impairing the host immune system during an inhalation anthrax infection. Here, we present the transcriptional responses of LT treated human monocytes in order to further elucidate the mechanisms of LT inhibition on the host immune system.ResultsWestern Blot analysis demonstrated cleavage of endogenous MEK1 and MEK3 when human monocytes were treated with 500 ng/mL LT for four hours, proving their susceptibility to anthrax lethal toxin. Furthermore, staining with annexin V and propidium iodide revealed that LT treatment did not induce human peripheral monocyte apoptosis or necrosis. Using Affymetrix Human Genome U133 Plus 2.0 Arrays, we identified over 820 probe sets differentially regulated after LT treatment at the p <0.001 significance level, interrupting the normal transduction of over 60 known pathways. As expected, the MAPKK signaling pathway was most drastically affected by LT, but numerous genes outside the well-recognized pathways were also influenced by LT including the IL-18 signaling pathway, Toll-like receptor pathway and the IFN alpha signaling pathway. Multiple genes involved in actin regulation, signal transduction, transcriptional regulation and cytokine signaling were identified after treatment with anthrax LT.ConclusionWe conclude LT directly targets human peripheral monocytes and causes multiple aberrant gene responses that would be expected to be associated with defects in human monocyte’s normal signaling transduction pathways and function. This study provides further insights into the mechanisms associated with the host immune system collapse during an anthrax infection, and suggests that anthrax LT may have additional downstream targets outside the well-known MAPK pathway.
Journal of Biological Chemistry | 2017
Hyun Suk Kim; Jac A. Nickoloff; Yuehan Wu; Elizabeth A. Williamson; Gurjit S. Sidhu; Brian L. Reinert; Aruna S. Jaiswal; Gayathri Srinivasan; Bhavita Patel; Kimi Y. Kong; Sandeep Burma; Suk Hee Lee; Robert Hromas
Replication is not as continuous as once thought, with DNA damage frequently stalling replication forks. Aberrant repair of stressed replication forks can result in cell death or genome instability and resulting transformation to malignancy. Stressed replication forks are most commonly repaired via homologous recombination (HR), which begins with 5′ end resection, mediated by exonuclease complexes, one of which contains Exo1. However, Exo1 requires free 5′-DNA ends upon which to act, and these are not commonly present in non-reversed stalled replication forks. To generate a free 5′ end, stalled replication forks must therefore be cleaved. Although several candidate endonucleases have been implicated in cleavage of stalled replication forks to permit end resection, the identity of such an endonuclease remains elusive. Here we show that the 5′-endonuclease EEPD1 cleaves replication forks at the junction between the lagging parental strand and the unreplicated DNA parental double strands. This cleavage creates the structure that Exo1 requires for 5′ end resection and HR initiation. We observed that EEPD1 and Exo1 interact constitutively, and Exo1 repairs stalled replication forks poorly without EEPD1. Thus, EEPD1 performs a gatekeeper function for replication fork repair by mediating the fork cleavage that permits initiation of HR-mediated repair and restart of stressed forks.
The Journal of Infectious Diseases | 2012
Kassidy M. Chauncey; Sarah E. Szarowicz; Gurjit S. Sidhu; Russell L. During; Frederick S. Southwick
Hemorrhage is a prominent clinical manifestation of systemic anthrax. Therefore, we have examined the effects of anthrax lethal and edema toxins on human platelets. We find that anthrax lethal toxin fails to cleave its target, mitogen-activated protein kinase 1, and anthrax edema toxin fails to increase intracellular cyclic adenosine monophosphate. Surface expression of toxin receptors tumor endothelial marker 8 and capillary morphogenesis gene 2, as well as coreceptor low density lipoprotein receptor-related protein 6 (LRP6), are markedly reduced, preventing toxin binding to platelets. Our studies suggest that the hemorrhagic clinical manifestations of systemic anthrax are unlikely to be caused by the direct binding and entry of anthrax toxins into human platelets.
Cancer Chemotherapy and Pharmacology | 2017
Gayathri Srinivasan; Gurjit S. Sidhu; Elizabeth A. Williamson; Aruna S. Jaiswal; Nasreen Najmunnisa; Keith Wilcoxen; Dennie Jones; Thomas J. George; Robert Hromas
Malignant pleural mesotheliomas (MPM) are most often surgically unresectable, and they respond poorly to current chemotherapy and radiation therapy. Between 23 and 64% of malignant pleural mesothelioma have somatic inactivating mutations in the BAP1 gene. BAP1 is a homologous recombination (HR) DNA repair component found in the BRCA1/BARD1 complex. Similar to BRCA1/2 deficient cancers, mutation in the BAP1 gene leads to a deficient HR pathway and increases the reliance on other DNA repair pathways. We hypothesized that BAP1-mutant MPM would require PARP1 for survival, similar to the BRCA1/2 mutant breast and ovarian cancers. Therefore, we used the clinical PARP1 inhibitors niraparib and olaparib to assess whether they could induce synthetic lethality in MPM. Surprisingly, we found that all MPM cell lines examined, regardless of BAP1 status, were addicted to PARP1-mediated DNA repair for survival. We found that niraparib and olaparib exposure markedly decreased clonal survival in multiple MPM cell lines, with and without BAP1 mutations. This clonal cell death may be due to the extensive replication fork collapse and genomic instability that PARP1 inhibition induces in MPM cells. The requirement of MPM cells for PARP1 suggests that they may generally arise from defects in HR DNA repair. More importantly, these data demonstrate that the PARP1 inhibitors could be effective in the treatment of MPM, for which little effective therapy exists.
Journal of Biological Chemistry | 2005
Gurjit S. Sidhu; Wei Li; Nicholas Laryngakis; Ellen Bishai; Tamas Balla; Frederick S. Southwick
PMC | 2017
Robert Hromas; Hyun Suk Kim; Gurjit S. Sidhu; Elizabeth A. Williamson; Aruna S. Jaiswal; Taylor A. Totterdale; Jocelyn Nole; Suk-Hee Lee; Jac A. Nickoloff; Kimi Y. Kong