Gursant Kular
University of Dundee
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gursant Kular.
Biochemical Journal | 2000
Simon Dowler; Richard A. Currie; David G. Campbell; Maria Deak; Gursant Kular; C P Downes; Dario R. Alessi
The second messenger phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] is generated by the action of phosphoinositide 3-kinase (PI 3-kinase), and regulates a plethora of cellular processes. An approach for dissecting the mechanisms by which these processes are regulated is to identify proteins that interact specifically with PtdIns(3,4,5)P(3). The pleckstrin homology (PH) domain has become recognized as the specialized module used by many proteins to interact with PtdIns(3,4,5)P(3). Recent work has led to the identification of a putative phosphatidylinositol 3,4,5-trisphosphate-binding motif (PPBM) at the N-terminal regions of PH domains that interact with this lipid. We have searched expressed sequence tag databases for novel proteins containing PH domains possessing a PPBM. Surprisingly, many of the PH domains that we identified do not bind PtdIns(3,4,5)P(3), but instead possess unexpected and novel phosphoinositide-binding specificities in vitro. These include proteins possessing PH domains that interact specifically with PtdIns(3,4)P(2) [TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns4P [FAPP1 (phosphatidylinositol-four-phosphate adaptor protein-1)], PtdIns3P [PEPP1 (phosphatidylinositol-three-phosphate-binding PH-domain protein-1) and AtPH1] and PtdIns(3,5)P(2) (centaurin-beta2). We have also identified two related homologues of PEPP1, termed PEPP2 and PEPP3, that may also interact with PtdIns3P. This study lays the foundation for future work to establish the phospholipid-binding specificities of these proteins in vivo, and their physiological role(s).
Nature Cell Biology | 2004
Anna Godi; Antonella Di Campli; Athanasios Konstantakopoulos; Giuseppe Di Tullio; Dario R. Alessi; Gursant Kular; Tiziana Daniele; Pierfrancesco Marra; John M. Lucocq; M. Antonietta De Matteis
The molecular mechanisms underlying the formation of carriers trafficking from the Golgi complex to the cell surface are still ill-defined; nevertheless, the involvement of a lipid-based machinery is well established. This includes phosphatidylinositol 4-phosphate (PtdIns(4)P), the precursor for phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). In yeast, PtdIns(4)P exerts a direct role, however, its mechanism of action and its targets in mammalian cells remain uncharacterized. We have identified two effectors of PtdIns(4)P, the four-phosphate-adaptor protein 1 and 2 (FAPP1 and FAPP2). Both proteins localize to the trans-Golgi network (TGN) on nascent carriers, and interact with PtdIns(4)P and the small GTPase ADP-ribosylation factor (ARF) through their plekstrin homology (PH) domain. Displacement or knockdown of FAPPs inhibits cargo transfer to the plasma membrane. Moreover, overexpression of FAPP-PH impairs carrier fission. Therefore, FAPPs are essential components of a PtdIns(4)P- and ARF-regulated machinery that controls generation of constitutive post-Golgi carriers.
Biochemical Journal | 2002
Stephen Watt; Gursant Kular; Ian Fleming; C. Peter Downes; John M. Lucocq
Ptd(4,5)P(2) is thought to promote and organize a wide range of cellular functions, including vesicular membrane traffic and cytoskeletal dynamics, by recruiting functional protein complexes to restricted locations in cellular membranes. However, little is known about the distribution of PtdIns(4,5)P(2) in the cell at high resolution. We have used the pleckstrin homology (PH) domain of phospholipase delta(1) (PLCdelta(1)), narrowly specific for PtdIns(4,5)P(2), to map the distribution of the lipid in astrocytoma and A431 cells. We applied the glutathione S-transferase-tagged PLCdelta(1) PH domain (PLCdelta(1)PH-GST) in an on-section labelling approach which avoids transfection procedures. Here we demonstrate PtdIns(4,5)P(2) labelling in the plasma membrane, and also in intracellular membranes, including Golgi (mainly stack), endosomes and endoplasmic reticulum, as well as in electron-dense structures within the nucleus. At the plasma membrane, labelling was more concentrated over lamellipodia, but not in caveolae, which contained less than 10% of the total cell-surface labelling. A dramatic decrease in signal over labelled compartments was observed on preincubation with the cognate headgroup [Ins(1,4,5)P(3)], and plasma-membrane labelling was substantially decreased after stimulation with thrombin-receptor-activating peptide (SFLLRN in the one-letter amino acid code), a treatment which markedly diminishes PtdIns(4,5)P(2) levels. Thus we have developed a highly selective method for mapping the PtdIns(4,5)P(2) distribution within cells at high resolution, and our data provide direct evidence for this lipid at key functional locations.
Molecular and Cellular Biology | 2003
Darren J. Powell; Eric Hajduch; Gursant Kular; Harinder S. Hundal
ABSTRACT Ceramide is generated in response to numerous stress-inducing stimuli and has been implicated in the regulation of diverse cellular responses, including cell death, differentiation, and insulin sensitivity. Recent evidence indicates that ceramide may regulate these responses by inhibiting the stimulus-mediated activation of protein kinase B (PKB), a key determinant of cell fate and insulin action. Here we show that inhibition of this kinase involves atypical PKCζ, which physically interacts with PKB in unstimulated cells. Insulin reduces the PKB-PKCζ interaction and stimulates PKB. However, dissociation of the kinase complex and the attendant hormonal activation of PKB were prevented by ceramide. Under these circumstances, ceramide activated PKCζ, leading to phosphorylation of the PKB-PH domain on Thr34. This phosphorylation inhibited phosphatidylinositol 3,4,5-trisphosphate (PIP3) binding to PKB, thereby preventing activation of the kinase by insulin. In contrast, a PKB-PH domain with a T34A mutation retained the ability to bind PIP3 even in the presence of a ceramide-activated PKCζ and, as such, expression of PKB T34A mutant in L6 cells was resistant to inhibition by ceramide treatment. Inhibitors of PKCζ and a kinase-dead PKCζ both antagonized the inhibitory effect of ceramide on PKB. Since PKB confers a prosurvival signal and regulates numerous pathways in response to insulin, suppressing its activation by a PKCζ-dependent process may be one mechanism by which ceramide promotes cell death and induces insulin resistance.
Science Signaling | 2002
Simon Dowler; Gursant Kular; Dario R. Alessi
The Protein Lipid Overlay (PLO) assay enables the identification of the lipid ligands with which lipid binding proteins interact. This assay also provides qualitative information on the relative affinity with which a protein binds to a lipid. In the PLO assay, serial dilutions of different lipids are spotted onto a nitrocellulose membrane to which they attach. These membranes are then incubated with a lipid binding protein possessing an epitope tag. The membranes are washed and the protein, still bound to the membrane by virtue of its interaction with lipid(s), is detected by immunoblotting with an antibody recognizing the epitope tag. This procedure requires only a few micrograms of protein and is quicker and cheaper to perform than other methods that have been developed to assess protein-lipid interactions. The reagents required for the PLO assay are readily available from commercial sources and the assay can be performed in any laboratory, even by those with no prior expertise in this area.
The EMBO Journal | 2004
David Komander; Alison Fairservice; Maria Deak; Gursant Kular; Alan R. Prescott; C. Peter Downes; Stephen T. Safrany; Dario R. Alessi; Daan M. F. van Aalten
3‐phosphoinositide‐dependent protein kinase‐1 (PDK1) phosphorylates and activates many kinases belonging to the AGC subfamily. PDK1 possesses a C‐terminal pleckstrin homology (PH) domain that interacts with PtdIns(3,4,5)P3/PtdIns(3,4)P2 and with lower affinity to PtdIns(4,5)P2. We describe the crystal structure of the PDK1 PH domain, in the absence and presence of PtdIns(3,4,5)P3 and Ins(1,3,4,5)P4. The structures reveal a ‘budded’ PH domain fold, possessing an N‐terminal extension forming an integral part of the overall fold, and display an unusually spacious ligand‐binding site. Mutagenesis and lipid‐binding studies were used to define the contribution of residues involved in phosphoinositide binding. Using a novel quantitative binding assay, we found that Ins(1,3,4,5,6)P5 and InsP6, which are present at micromolar levels in the cytosol, interact with full‐length PDK1 with nanomolar affinities. Utilising the isolated PDK1 PH domain, which has reduced affinity for Ins(1,3,4,5,6)P5/InsP6, we perform localisation studies that suggest that these inositol phosphates serve to anchor a portion of cellular PDK1 in the cytosol, where it could activate its substrates such as p70 S6‐kinase and p90 ribosomal S6 kinase that do not interact with phosphoinositides.
Journal of Biological Chemistry | 2008
Charlotte Green; Olga Göransson; Gursant Kular; Nick R. Leslie; Alexander Gray; Dario R. Alessi; Kei Sakamoto; Harinder S. Hundal
Protein kinase B (PKB)/Akt has been strongly implicated in the insulin-dependent stimulation of GLUT4 translocation and glucose transport in skeletal muscle and fat cells. Recently an allosteric inhibitor of PKB (Akti) that selectively targets PKBα and -β was reported, but as yet its precise mechanism of action or ability to suppress key insulin-regulated events such as glucose and amino acid uptake and glycogen synthesis in muscle cells has not been reported. We show here that Akti ablates the insulin-dependent regulation of these processes in L6 myotubes at submicromolar concentrations and that inhibition correlates tightly with loss of PKB activation/phosphorylation. Similar findings were obtained using 3T3-L1 adipocytes. Akti did not inhibit IRS1 tyrosine phosphorylation, phosphatidylinositol 3-kinase signaling, or activation of Erks, ribosomal S6 kinase, or atypical protein kinases C but significantly impaired regulation of downstream PKB targets glycogen synthase kinase-3 and AS160. Akti-mediated inhibition of PKB requires an intact kinase pleckstrin homology domain but does not involve suppression of 3-phosphoinositide binding to this domain. Importantly, we have discovered that Akti inhibition is critically dependent upon a solvent-exposed tryptophan residue (Trp-80) that is present within the pleckstrin homology domain of all three PKB isoforms and whose mutation to an alanine (PKBW80A) yields an Akti-resistant kinase. Cellular expression of PKBW80A antagonized the Akti-mediated inhibition of glucose and amino acid uptake. Our findings support a critical role for PKB in the hormonal regulation of glucose and system A amino acid uptake and indicate that use of Akti and expression of the drug-resistant kinase will be valuable tools in delineating cellular PKB functions.
Biochemical Journal | 2003
David Komander; Gursant Kular; Jennifer Bain; Matthew Elliott; Dario R. Alessi; Daan M. F. van Aalten
PDK1 (3-phosphoinositide-dependent protein kinase-1) is a member of the AGC (cAMP-dependent, cGMP-dependent, protein kinase C) family of protein kinases, and has a key role in insulin and growth-factor signalling through phosphorylation and subsequent activation of a number of other AGC kinase family members, such as protein kinase B. The staurosporine derivative UCN-01 (7-hydroxystaurosporine) has been reported to be a potent inhibitor for PDK1, and is currently undergoing clinical trials for the treatment of cancer. Here, we report the crystal structures of staurosporine and UCN-01 in complex with the kinase domain of PDK1. We show that, although staurosporine and UCN-01 interact with the PDK1 active site in an overall similar manner, the UCN-01 7-hydroxy group, which is not present in staurosporine, generates direct and water-mediated hydrogen bonds with active-site residues. Inhibition data from UCN-01 tested against a panel of 29 different kinases show a different pattern of inhibition compared with staurosporine. We discuss how these differences in inhibition could be attributed to specific interactions with the additional 7-hydroxy group, as well as the size of the 7-hydroxy-group-binding pocket. This information could lead to opportunities for structure-based optimization of PDK1 inhibitors.
Biochemical Journal | 2004
Ian Fleming; Ian H. Batty; Alan R. Prescott; Alexander Gray; Gursant Kular; Hazel Stewart; C. Peter Downes
Binding of the Rac1-specific guanine-nucleotide-exchange factor, Tiam1, to the plasma membrane requires the N-terminal pleckstrin homology domain. In the present study, we show that membrane-association is mediated by binding of PtdIns(4,5)P(2) to the pleckstrin homology domain. Moreover, in 1321N1 astrocytoma cells, translocation of Tiam1 to the cytosol, following receptor-mediated stimulation of PtdIns(4,5)P(2) breakdown, correlates with decreased Rac1-GTP levels, indicating that membrane-association is required for GDP/GTP exchange on Rac1. In addition, we show that platelet-derived growth factor activates Rac1 in vivo by increasing PtdIns(3,4,5)P(3) concentrations, rather than the closely related lipid, PtdIns(3,4)P(2). Finally, the data demonstrate that PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3) bind to the same pleckstrin homology domain in Tiam1 and that soluble inositol phosphates appear to compete with lipids for this binding. Together, these novel observations provide strong evidence that distinct phosphoinositides regulate different functions of this enzyme, indicating that local concentrations of signalling lipids and the levels of cytosolic inositol phosphates will play crucial roles in determining its activity in vivo.
Journal of Biological Chemistry | 2005
David Komander; Gursant Kular; Maria Deak; Dario R. Alessi; Daan M. F. van Aalten
3-Phosphoinositide-dependent protein kinase-1 (PDK1) phosphorylates the T-loop of several AGC (cAMP-dependent, cGMP-dependent, protein kinase C) family protein kinases, resulting in their activation. Previous structural studies have revealed that the αC-helix, located in the small lobe of the kinase domain of PDK1, is a key regulatory element, as it links a substrate interacting site termed the hydrophobic motif (HM) pocket with the phosphorylated Ser-241 in the T-loop. In this study we have demonstrated by mutational analysis that interactions between the phosphorylated Ser-241 and the αC-helix are not required for PDK1 activity or substrate binding through the HM-pocket but are necessary for PDK1 to be activated or stabilized by a peptide that binds to this site. The structure of an inactive T-loop mutant of PDK1, in which Ser-241 is changed to Ala, was also determined. This structure, together with surface plasmon resonance binding studies, demonstrates that the PDK1(S241A)-inactive mutant possesses an intact HM-pocket as well as an ordered αC-helix. These findings reveal that the integrity of the αC-helix and HM-pocket in PDK1 is not regulated by T-loop phosphorylation.