Gurutzeta Guillera-Arroita
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gurutzeta Guillera-Arroita.
PLOS ONE | 2014
Gurutzeta Guillera-Arroita; José J. Lahoz-Monfort; Darryl I. MacKenzie; Brendan A. Wintle; Michael A. McCarthy
In a recent paper, Welsh, Lindenmayer and Donnelly (WLD) question the usefulness of models that estimate species occupancy while accounting for detectability. WLD claim that these models are difficult to fit and argue that disregarding detectability can be better than trying to adjust for it. We think that this conclusion and subsequent recommendations are not well founded and may negatively impact the quality of statistical inference in ecology and related management decisions. Here we respond to WLDs claims, evaluating in detail their arguments, using simulations and/or theory to support our points. In particular, WLD argue that both disregarding and accounting for imperfect detection lead to the same estimator performance regardless of sample size when detectability is a function of abundance. We show that this, the key result of their paper, only holds for cases of extreme heterogeneity like the single scenario they considered. Our results illustrate the dangers of disregarding imperfect detection. When ignored, occupancy and detection are confounded: the same naïve occupancy estimates can be obtained for very different true levels of occupancy so the size of the bias is unknowable. Hierarchical occupancy models separate occupancy and detection, and imprecise estimates simply indicate that more data are required for robust inference about the system in question. As for any statistical method, when underlying assumptions of simple hierarchical models are violated, their reliability is reduced. Resorting in those instances where hierarchical occupancy models do no perform well to the naïve occupancy estimator does not provide a satisfactory solution. The aim should instead be to achieve better estimation, by minimizing the effect of these issues during design, data collection and analysis, ensuring that the right amount of data is collected and model assumptions are met, considering model extensions where appropriate.
Molecular Ecology Resources | 2016
José J. Lahoz-Monfort; Gurutzeta Guillera-Arroita; Reid Tingley
Environmental DNA (eDNA) sampling is prone to both false‐positive and false‐negative errors. We review statistical methods to account for such errors in the analysis of eDNA data and use simulations to compare the performance of different modelling approaches. Our simulations illustrate that even low false‐positive rates can produce biased estimates of occupancy and detectability. We further show that removing or classifying single PCR detections in an ad hoc manner under the suspicion that such records represent false positives, as sometimes advocated in the eDNA literature, also results in biased estimation of occupancy, detectability and false‐positive rates. We advocate alternative approaches to account for false‐positive errors that rely on prior information, or the collection of ancillary detection data at a subset of sites using a sampling method that is not prone to false‐positive errors. We illustrate the advantages of these approaches over ad hoc classifications of detections and provide practical advice and code for fitting these models in maximum likelihood and Bayesian frameworks. Given the severe bias induced by false‐negative and false‐positive errors, the methods presented here should be more routinely adopted in eDNA studies.
Methods in Ecology and Evolution | 2015
Stefano Canessa; Gurutzeta Guillera-Arroita; José J. Lahoz-Monfort; Darren M. Southwell; Doug P. Armstrong; Iadine Chadès; Robert C. Lacy; Sarah J. Converse
Summary Applied ecologists continually advocate further research, under the assumption that obtaining more information will lead to better decisions. Value of information (VoI) analysis can be used to quantify how additional information may improve management outcomes: despite its potential, this method is still underused in environmental decision-making. We provide a primer on how to calculate the VoI and assess whether reducing uncertainty will change a decision. Our aim is to facilitate the application of VoI by managers who are not familiar with decision-analytic principles and notation, by increasing the technical accessibility of the tool. Calculating the VoI requires explicit formulation of management objectives and actions. Uncertainty must be clearly structured and its effects on management outcomes evaluated. We present two measures of the VoI. The expected value of perfect information is a calculation of the expected improvement in management outcomes that would result from access to perfect knowledge. The expected value of sample information calculates the improvement in outcomes expected by collecting a given sample of new data. We guide readers through the calculation of VoI using two case studies: (i) testing for disease when managing a frog species and (ii) learning about demographic rates for the reintroduction of an endangered turtle. We illustrate the use of Bayesian updating to incorporate new information. The VoI depends on our current knowledge, the quality of the information collected and the expected outcomes of the available management actions. Collecting information can require significant investments of resources; VoI analysis assists managers in deciding whether these investments are justified.
PLOS ONE | 2011
Hariyo T. Wibisono; Matthew Linkie; Gurutzeta Guillera-Arroita; Joseph Smith; Sunarto; Wulan Pusparini; Asriadi; Pandu Baroto; Nick Brickle; Yoan Dinata; Elva Gemita; Donny Gunaryadi; Iding Achmad Haidir; Herwansyah; Indri Karina; Dedy Kiswayadi; Decki Kristiantono; Harry Kurniawan; José J. Lahoz-Monfort; Nigel Leader-Williams; Tom Maddox; Deborah J. Martyr; Maryati; Agung Nugroho; Karmila Parakkasi; Dolly Priatna; Eka Ramadiyanta; Widodo S. Ramono; Goddilla V. Reddy; Ente J. J. Rood
Large carnivores living in tropical rainforests are under immense pressure from the rapid conversion of their habitat. In response, millions of dollars are spent on conserving these species. However, the cost-effectiveness of such investments is poorly understood and this is largely because the requisite population estimates are difficult to achieve at appropriate spatial scales for these secretive species. Here, we apply a robust detection/non-detection sampling technique to produce the first reliable population metric (occupancy) for a critically endangered large carnivore; the Sumatran tiger (Panthera tigris sumatrae). From 2007–2009, seven landscapes were surveyed through 13,511 km of transects in 394 grid cells (17×17 km). Tiger sign was detected in 206 cells, producing a naive estimate of 0.52. However, after controlling for an unequal detection probability (where p = 0.13±0.017; ±S.E.), the estimated tiger occupancy was 0.72±0.048. Whilst the Sumatra-wide survey results gives cause for optimism, a significant negative correlation between occupancy and recent deforestation was found. For example, the Northern Riau landscape had an average deforestation rate of 9.8%/yr and by far the lowest occupancy (0.33±0.055). Our results highlight the key tiger areas in need of protection and have led to one area (Leuser-Ulu Masen) being upgraded as a ‘global priority’ for wild tiger conservation. However, Sumatra has one of the highest global deforestation rates and the two largest tiger landscapes identified in this study will become highly fragmented if their respective proposed roads networks are approved. Thus, it is vital that the Indonesian government tackles these threats, e.g. through improved land-use planning, if it is to succeed in meeting its ambitious National Tiger Recovery Plan targets of doubling the number of Sumatran tigers by 2022.
Nature | 2016
Skipton Woolley; Derek P. Tittensor; Piers K. Dunstan; Gurutzeta Guillera-Arroita; José J. Lahoz-Monfort; Brendan A. Wintle; Boris Worm; Timothy D. O’Hara
The deep ocean is the largest and least-explored ecosystem on Earth, and a uniquely energy-poor environment. The distribution, drivers and origins of deep-sea biodiversity remain unknown at global scales. Here we analyse a database of more than 165,000 distribution records of Ophiuroidea (brittle stars), a dominant component of sea-floor fauna, and find patterns of biodiversity unlike known terrestrial or coastal marine realms. Both patterns and environmental predictors of deep-sea (2,000–6,500 m) species richness fundamentally differ from those found in coastal (0–20 m), continental shelf (20–200 m), and upper-slope (200–2,000 m) waters. Continental shelf to upper-slope richness consistently peaks in tropical Indo-west Pacific and Caribbean (0–30°) latitudes, and is well explained by variations in water temperature. In contrast, deep-sea species show maximum richness at higher latitudes (30–50°), concentrated in areas of high carbon export flux and regions close to continental margins. We reconcile this structuring of oceanic biodiversity using a species–energy framework, with kinetic energy predicting shallow-water richness, while chemical energy (export productivity) and proximity to slope habitats drive deep-sea diversity. Our findings provide a global baseline for conservation efforts across the sea floor, and demonstrate that deep-sea ecosystems show a biodiversity pattern consistent with ecological theory, despite being different from other planetary-scale habitats.
PLOS ONE | 2012
David Sewell; Gurutzeta Guillera-Arroita; Richard A. Griffiths; Trevor J. C. Beebee
Biodiversity monitoring programs need to be designed so that population changes can be detected reliably. This can be problematical for species that are cryptic and have imperfect detection. We used occupancy modeling and power analysis to optimize the survey design for reptile monitoring programs in the UK. Surveys were carried out six times a year in 2009–2010 at multiple sites. Four out of the six species – grass snake, adder, common lizard, slow-worm –were encountered during every survey from March-September. The exceptions were the two rarest species – sand lizard and smooth snake – which were not encountered in July 2009 and March 2010 respectively. The most frequently encountered and most easily detected species was the slow-worm. For the four widespread reptile species in the UK, three to four survey visits that used a combination of directed transect walks and artificial cover objects resulted in 95% certainty that a species would be detected if present. Using artificial cover objects was an effective detection method for most species, considerably increased the detection rate of some, and reduced misidentifications. To achieve an 85% power to detect a decline in any of the four widespread species when the true decline is 15%, three surveys at a total of 886 sampling sites, or four surveys at a total of 688 sites would be required. The sampling effort needed reduces to 212 sites surveyed three times, or 167 sites surveyed four times, if the target is to detect a true decline of 30% with the same power. The results obtained can be used to refine reptile survey protocols in the UK and elsewhere. On a wider scale, the occupancy study design approach can be used to optimize survey effort and help set targets for conservation outcomes for regional or national biodiversity assessments.
Ecology and Evolution | 2014
Gurutzeta Guillera-Arroita; Cindy E. Hauser; Michael A. McCarthy
Invasive species are a cause for concern in natural and economic systems and require both monitoring and management. There is a trade-off between the amount of resources spent on surveying for the species and conducting early management of occupied sites, and the resources that are ultimately spent in delayed management at sites where the species was present but undetected. Previous work addressed this optimal resource allocation problem assuming that surveys continue despite detection until the initially planned survey effort is consumed. However, a more realistic scenario is often that surveys stop after detection (i.e., follow a “removal” sampling design) and then management begins. Such an approach will indicate a different optimal survey design and can be expected to be more efficient. We analyze this case and compare the expected efficiency of invasive species management programs under both survey methods. We also evaluate the impact of mis-specifying the type of sampling approach during the program design phase. We derive analytical expressions that optimize resource allocation between monitoring and management in surveillance programs when surveys stop after detection. We do this under a scenario of unconstrained resources and scenarios where survey budget is constrained. The efficiency of surveillance programs is greater if a “removal survey” design is used, with larger gains obtained when savings from early detection are high, occupancy is high, and survey costs are not much lower than early management costs at a site. Designing a surveillance program disregarding that surveys stop after detection can result in an efficiency loss. Our results help guide the design of future surveillance programs for invasive species. Addressing program design within a decision-theoretic framework can lead to a better use of available resources. We show how species prevalence, its detectability, and the benefits derived from early detection can be considered.
Integrative Zoology | 2010
Matthew Linkie; Gurutzeta Guillera-Arroita; Joseph M. Smith; D. Mark Rayan
With only 5% of the worlds wild tigers (Panthera tigris Linnaeus, 1758) remaining since the last century, conservationists urgently need to know whether or not the management strategies currently being employed are effectively protecting these tigers. This knowledge is contingent on the ability to reliably monitor tiger populations, or subsets, over space and time. In the this paper, we focus on the 2 seminal methodologies (camera trap and occupancy surveys) that have enabled the monitoring of tiger populations with greater confidence. Specifically, we: (i) describe their statistical theory and application in the field; (ii) discuss issues associated with their survey designs and state variable modeling; and, (iii) discuss their future directions. These methods have had an unprecedented influence on increasing statistical rigor within tiger surveys and, also, surveys of other carnivore species. Nevertheless, only 2 published camera trap studies have gone beyond single baseline assessments and actually monitored population trends. For low density tiger populations (e.g. <1 adult tiger/100 km(2)) obtaining sufficient precision for state variable estimates from camera trapping remains a challenge because of insufficient detection probabilities and/or sample sizes. Occupancy surveys have overcome this problem by redefining the sampling unit (e.g. grid cells and not individual tigers). Current research is focusing on developing spatially explicit capture-mark-recapture models and estimating abundance indices from landscape-scale occupancy surveys, as well as the use of genetic information for identifying and monitoring tigers. The widespread application of these monitoring methods in the field now enables complementary studies on the impact of the different threats to tiger populations and their response to varying management intervention.
Methods in Ecology and Evolution | 2017
Gurutzeta Guillera-Arroita; José J. Lahoz-Monfort; Anthony van Rooyen; Andrew R. Weeks; Reid Tingley
Summary Accurate knowledge of species occurrence is fundamental to a wide variety of ecological, evolutionary and conservation applications. Assessing the presence or absence of species at sites is often complicated by imperfect detection, with different mechanisms potentially contributing to false-negative and/or false-positive errors at different sampling stages. Ambiguities in the data mean that estimation of relevant parameters might be confounded unless additional information is available to resolve those uncertainties. Here, we consider the analysis of species detection data with false-positive and false-negative errors at multiple levels. We develop and examine a two-stage occupancy-detection model for this purpose. We use profile likelihoods for identifiability analysis and estimation, and study the types of additional data required for reliable estimation. We test the model with simulated data, and then analyse data from environmental DNA (eDNA) surveys of four Australian frog species. In our case study, we consider that false positives may arise due to contamination at the water sample and quantitative PCR-sample levels, whereas false negatives may arise due to eDNA not being captured in a field sample, or due to the sensitivity of laboratory tests. We augment our eDNA survey data with data from aural surveys and laboratory calibration experiments. We demonstrate that the two-stage model with false-positive and false-negative errors is not identifiable if only survey data prone to false positives are available. At least two sources of extra information are required for reliable estimation (e.g. records from a survey method with unambiguous detections, and a calibration experiment). Alternatively, identifiability can be achieved by setting plausible bounds on false detection rates as prior information in a Bayesian setting. The results of our case study matched our simulations with respect to data requirements, and revealed false-positive rates greater than zero for all species. We provide statistical modelling tools to account for uncertainties in species occurrence survey data when false negatives and false positives could occur at multiple sampling stages. Such data are often needed to support management and policy decisions. Dealing with these uncertainties is relevant for traditional survey methods, but also for promising new techniques, such as eDNA sampling.
Frontiers in Ecology and Evolution | 2014
José J. Lahoz-Monfort; Gurutzeta Guillera-Arroita; Cindy E. Hauser
The management of natural systems often involves periodic interventions that must be decided without a complete understanding of how the system responds to our actions. It is in this situation of recurrent decision-making under uncertainty that adaptive management (AM) has been repeatedly advocated, with each decision round providing an opportunity to improve our knowledge in order to facilitate future decisions: the ‘learning while managing’ tenet of AM. When the subject of management is a wildlife population (that is harvested, is a pest or is threatened with extinction), population models will be at the core of the AM process. We provide an overview of the steps in AM, from the set-up to the iterative phase, highlighting the central role that population models can play at different stages of the process of planning and implementing an AM program, as well as when analyzing the value of acquiring new information. We discuss the contexts in which these models have been applied in natural resource management and biodiversity conservation. We aim to bring this applied discipline to the attention of researchers interested in population dynamics, while stressing the relevance of these models for managers considering an AM approach.