Gurwinder Kaur
Council of Scientific and Industrial Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gurwinder Kaur.
International Journal of Systematic and Evolutionary Microbiology | 2015
Anand Kumar; Abhay Bajaj; Mathan Kumar R; Gurwinder Kaur; Navjot Kaur; Kumar Singh N; Natesan Manickam; Shanmugam Mayilraj
A novel Gram-staining-negative gammaproteobacterium, designated IITR-13T, was isolated from a pesticide-contaminated soil and characterized using a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, the strain showed the closest similarity (98.7 %) to Rheinheimera tangshanensis JA3-B52T followed by Rheinheimera texasensis A62-14BT (97.7 %) and Rheinheimera soli BD-d46T (97.3 %). The 16S rRNA gene sequence similarity of the novel strain to other members of the genus Rheinheimera was < 97.3 %. However, DNA-DNA hybridization between strain IITR-13T and the type strains of R. tangshanensis, R. texasensis and R. soli was 47.5 ± 0.6, 42.4 ± 0.4 and 39.8 ± 0.3 %, respectively; these values are less than 70 %, a threshold value for delineation of a novel species. The strain had C12 : 0 3-OH, C16 : 0, C17 : 1ω8c, summed feature 3 (C16 : 1ω6c/C16 : 1ω7c) and C18 : 1ω6c as the major fatty acids. The major isoprenoid quinones detected for strain IITR-13T were ubiquinone Q-8 and menaquinone MK-7.The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and seven unknown phospholipids. Based on phenotypic and chemotaxonomic characteristics and analysis of the 16S rRNA gene sequence, the novel strain should be assigned to a novel species, for which the name Rheinheimera mesophila sp. nov. is proposed, with the type strain IITR-13T ( = MTCC 12064T = DSM 29723T). Also, we report the draft genome sequence of Rheinheimera mesophila IITR-13T; the draft genome sequence includes 3 749 903 bases and comprises 3449 predicted coding sequences, with a G+C content of 47.8 %. It consists of 102 contigs (>1000 bp).
International Journal of Systematic and Evolutionary Microbiology | 2016
Gurwinder Kaur; Parveen Mual; Narender Kumar; Ashish Verma; Anand Kumar; Srinivasan Krishnamurthi; Shanmugam Mayilraj
The taxonomic position of a lemon-yellow-pigmented actinobacterium, strain JF-6T, isolated from Aurelia aurita, the moon jellyfish, collected from the Bay of Bengal coast, Kanyakumari, India, was determined using a polyphasic approach. The strain had phenotypic and chemotaxonomic properties that were consistent with its classification in the genus Microbacterium. Alignment of the 16S rRNA gene sequence of strain JF-6T with sequences from Microbacterium arthrosphaerae CC-VM-YT, Microbacterium yannicii G72T, Microbacterium trichothecenolyticum IFO 15077T, Microbacterium flavescens DSM 20643T, Microbacterium insulae DS-66T, Microbacterium resistens DMMZ 1710T and Microbacterium thalassium IFO 16060T revealed similarities of 98.95, 98.76, 98.43, 98.41, 98.41, 98.26 and 98.22 %, respectively. However, the levels of DNA-DNA relatedness with its closest phylogenetic neighbours confirmed that it represents a novel species within the genus. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol and an unknown glycolipid. The major menaquinones detected for strain JF-6T were MK-13 and MK-12. The diamino acid in the cell-wall peptidoglycan was ornithine and the peptidoglycan was type B2β (Glu/Hyg-Gly-d-Orn). The DNA G+C content was 69.4 mol%. Based on these differences, strain JF-6T (=MTCC 11843T=JCM 30060T=KCTC 39828T) should be classified as the type strain of a novel species of Microbacterium, for which the name Microbacterium aureliae sp. nov. is proposed.
International Journal of Systematic and Evolutionary Microbiology | 2015
Rajendran Mathan Kumar; Gurwinder Kaur; Anand Kumar; Monu Bala; Nitin Kumar Singh; Navjot Kaur; Narender Kumar; Shanmugam Mayilraj
The taxonomic position of a Gram-stain positive bacterium isolated from a solar saltern sample collected from Kanyakumari, coastal region of the Bay of Bengal, India, was analysed by using a polyphasic approach. The isolated strain, designated SA2-6T, had phenotypic characteristics that matched those of the genus Bacillus. The 16S rRNA gene sequence (1493 bases) of the novel strain was compared with those of previously studied Bacillus type strains and confirmed that the strain belongs to the genus Bacillus and was moderately closely related to the type strain of Bacillus foraminis at 97.5 % 16S rRNA gene sequence similarity, followed by those of Bacillus thioparans (96.9 %), Bacillus subterraneus (96.8 %), Bacillus jeotgali (96.6 %), Bacillus selenatarsenatis (96.6 %) and Bacillus boroniphilus (96.6 %). 16S rRNA gene sequence analysis indicated that strain SA2-6T differs from all other species of the genus Bacillus by at least 2.5 %. It contained MK-7 as the predominant menaquinone, meso-diaminopimelic acid as the diagnostic cell-wall diamino acid, and iso-C15 : 0 and anteiso-C15 : 0 as major fatty acids. Major lipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE). Based on data from this polyphasic study, strain SA2-6T is considered to represent a novel species of the genus Bacillus, for which the name Bacillus campisalis sp. nov. is proposed. The type strain is SA2-6T ( = MTCC 11848T = DSM 28801T). The draft genome of strain SA2-6T consisted of 5 183 363 bp with G+C content of 45.44 mol%, 5352 predicted coding sequences, 191 RNAs and 479 subsystems.
International Journal of Systematic and Evolutionary Microbiology | 2015
Rajendran Mathan Kumar; Gurwinder Kaur; Narender Kumar; Anand Kumar; Nitin Kumar Singh; Monu Bala; Navjot Kaur; Shanmugam Mayilraj
A Gram-staining-positive, coccoid, halotolerant bacterial strain, designated SV-16T, was isolated from marine sediment and subjected to a polyphasic taxonomic study. The strain exhibited phenotypic properties that included chemotaxonomic characteristics consistent with its classification in the genus Salinicoccus. Growth occurred at temperatures in the range 25-37 °C (optimum 30 °C), at pH 7.0-11.0 (optimum pH 8.0) and at NaCl concentrations of up to 25.0% (optimum 15.0%). The highest level of 16S rRNA gene sequence similarity was with Salinicoccus carnicancri CrmT (98.6%) followed by Salinicoccus halodurans W24T (96.6%). The predominant polar lipids were diphosphatidylglycerol, phosphatidylinositol and phosphatidylglycerol. The major cellular fatty acids were iso-C15:0, anteiso-C15:0, iso-C17:0 and anteiso-C17:0. The draft genome of strain SV-16T consisted of 2,591,284 bp with a DNA G+C content of 48.7 mol%. On the basis of the phenotypic characteristics and genotypic distinctiveness of strain SV-16T, it should be classified within a novel species of the genus Salinicoccus, for which the name Salinicoccus sediminis sp. nov. is proposed. The type strain is SV-16T ( = MTCC 11832T = DSM 28797T).
Frontiers in Microbiology | 2017
Atul Munish Chander; Ramesan Girish Nair; Gurwinder Kaur; Rakesh Kochhar; D. K. Dhawan; Sanjay Kumar Bhadada; Shanmugam Mayilraj
Species of the genus Nesterenkonia have been isolated from different ecological niches, especially from saline habitats and reported as weak human pathogens causing asymptomatic bacteraemia. Here, for the first time we are reporting the genome sequence and pathogenomic analysis of a strain designated as CD08_7 isolated from the duodenal mucosa of a celiac disease patient, identified as Nesterenkonia jeotgali. To date, only five strains of the genus Nesterenkonia (N. massiliensis strain NP1T, Nesterenkonia sp. strain JCM 19054, Nesterenkonia sp. strain F and Nesterenkonia sp. strain AN1) have been whole genome sequenced and annotated. In the present study we have mapped and compared the virulence profile of N. jeotgali strain CD08_7 along with other reference genomes which showed some characteristic features that could contribute to pathogenicity. The RAST (Rapid Annotation using Subsystem Technology) based genome mining revealed more genes responsible for pathogenicity in strain CD08_7 when compared with the other four sequenced strains. The studied categories were resistance to antibiotic and toxic compounds, invasion and intracellular resistance, membrane transport, stress response, osmotic stress, oxidative stress, phages and prophages and iron acquisition. A total of 1431 protein-encoding genes were identified in the genome of strain CD08_7 among which 163 were predicted to contribute for pathogenicity. Out of 163 genes only 59 were common to other genome, which shows the higher levels of genetic richness in strain CD08_7 that may contribute to its functional versatility. This study provides a comprehensive analysis on genome of N. jeotgali strain CD08_7 and possibly indicates its importance as a clinical pathogen.
Genome Announcements | 2016
Atul Munish Chander; Gurwinder Kaur; Ramesan Girish Nair; D. K. Dhawan; Rakesh Kochhar; Shanmugam Mayilraj; Sanjay Kumar Bhadada
ABSTRACT For the first time, we report here the 3.5-Mb genome of Serinicoccus chungangensis strain CD08_5, isolated from duodenal mucosa from a celiac disease (CD) patient. The specific annotations obtained revealed genes associated with virulence, disease, and defense, which predict its probable role in the pathogenesis of CD.
International Journal of Systematic and Evolutionary Microbiology | 2017
Deepika Pal; R Kumar Mathan; Navjot Kaur; Narender Kumar; Gurwinder Kaur; Nitin Kumar Singh; Srinivasan Krishnamurthi; Shanmugam Mayilraj
The taxonomic position of a Gram-stain-positive, endospore-forming bacterium, strain KS16-9T, isolated from a marine sediment sample collected from Kovalam, Kanyakumari coastal region of the Indian Ocean, India, was analysed by a polyphasic approach. Strain KS16-9T had typical phenotypic characteristics and chemotaxonomic features (menaquinones, fatty acids and lipids) that were consistent with the genus Bacillus. omparative analysis of the 16S rRNA gene sequence of the strain with previously published Bacillus type strains confirmed that it belongs to the genus Bacillus and is moderately related to Bacillus persicus B48T (98.42 % similarity), followed by Bacillus foraminis CV53T (97.67 %) and Bacillus rigiliprofundi (97.61 %). Other species in the genus Bacillusshared <97.6 % 16S rRNA gene sequence similarity. Strain KS16-9T contained MK-7 as the predominant menaquinone, meso-diaminopimelic acid as the diagnostic cell-wall diamino acid, iso-C15 : 0 and anteiso-C15 : 0 as major fatty acids, and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine as the major phospholipids. The DNA G+C content of strain KS16-9T was 45.4 mol%. Based on data from this polyphasic taxonomic study, strain KS16-9T represents a novel species of the genus Bacillus, for which the name Bacillus maritimus sp. nov. is proposed. The type strain is KS16-9T (=MTCC 12305T=DSM 100413T=KCTC 33834T).
International Journal of Systematic and Evolutionary Microbiology | 2016
Abhay Bajaj; Anand Kumar; Shivani Yadav; Gurwinder Kaur; Monu Bala; Nitin Kumar Singh; Rajendran Mathan Kumar; Natesan Manickam; Shanmugam Mayilraj
The taxonomic position of a Gram-stain negative, non-violaceinpigmented bacterium isolated from an insecticide-contaminated site was characterized by a polyphasic approach. The bacterium was able to grow on three different halogenated compounds namely 1-hlorobutane, 1-hloropropane and 1,2-ichloroethane. As a critical step in the degradation of these haloalkanes, stoichiometric amounts of dechlorination were estimated. Based on selective enrichment method for three months, using a highly contaminated mixed chemical soil, a bacterium was obtained and designated as IITR-71T. Its versatility and novelty led us to further characterize it by polyphasic taxonomy. The 16S rRNA gene sequence (1446 bases) comparison showed highest similarity with those of members of the genus Chromobacterium with the most closely related species to strain IITR-71T being Chromobacterium aquaticum (99.3 %) followed by Chromobacterium haemolyticum (98.6 %) and Chromobacterium piscinae (97.1 %). The major ubiquinone was Q-8. Predominant polar lipids are phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and diphosphatidylglycerol (DPG). The DNA G+C content of IITR-71T was estimated to be 61.2 mol%. The genotypic and phenotypic distinctiveness of IITR-71T and its phylogenetic relationships indicate that IITR-71T represents a novel species, for which the name Chromobacterium alkanivorans sp. nov. is proposed. The type strain is IITR-71T (=MTCC 11059T=JCM 30068T=KCTC 52433T).
Journal of Data Mining in Genomics & Proteomics | 2016
Ramesan Girish Nair; Gurwinder Kaur; Indu Khatri; Nitin Kumar Singh; Sudeep K. Maurya; Srikrishna Subramanian; Arunanshu Behera; Divya Dahiya; Javed N. Agrewala; Shanmugam Mayilraj
Coagulase-negative Staphylococci (CNS) are known to cause distinct types of infections in humans like endocarditis and urinary tract infections (UTI). Surprisingly, there is a lack of genome analysis data in literature against CNS particularly of human origin. In light of this, we performed genome mining and comparative genomic analysis of CNS strains Staphylococcus cohnii subsp. cohnii strain GM22B2, Staphylococcus equorum subsp. strain equorum G8HB1, Staphylococcus pasteuri strain BAB3 isolated from gall bladder and Staphylococcus haemolyticus strain 1HT3, Staphylococcus warneri strain 1DB1 isolated from colon. We identified 29% of shared virulence determinants in the CNS strains which involved resistance to antibiotics and toxic compounds, bacteriocins and ribosomally synthesized peptides, adhesion, invasion, intracellular resistance, prophage regions, pathogenicity islands. 10 unique virulence factors involved in adhesion, negative transcriptional regulation, resistance to copper and cadmium, phage maturation were also present in our strains. Apart from comparing the genome homology, size and G + C content, we also showed the presence 10 different CRISPR-cas genes in the CNS strains. Further, KAAS based annotation revealed the presence of CNS genes in different pathways involved in human diseases. In conclusion, this study is a first attempt to unveil the pathogenomics of CNS isolated from two distinct body organs and highlights the importance of CNS as emerging pathogens of health care sector.
International Journal of Systematic and Evolutionary Microbiology | 2016
Gurwinder Kaur; Narender Kumar; Poonam Mual; Anand Kumar; Rajendran Mathan Kumar; Shanmugam Mayilraj
A pale-yellowish bacterium, strain KWS-1T, was isolated from seawater during a study of the bacterial diversity of the marine environment of the Kanyakumari coastal region of the Bay of Bengal, India, and was studied by using a polyphasic taxonomic approach. Strain KWS-1T had morphological and chemotaxonomic properties (cell-wall diamino acid, menaquinone and fatty acid profile) consistent with its classification in the genus Brachybacterium. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain KWS-1T was related most closely to Brachybacterium paraconglomeratum JCM 17781T, followed by Brachybacterium saurashtrense DSM 23186T, Brachybacterium gingengisoli JCM 19356T, Brachybacterium faecium JCM 11609T and Brachybacterium conglomeratum JCM 11608T (98.45, 98.24, 98.12, 98.10 and 98.10 % similarity, respectively), whereas the sequence similarity values with respect to the other Brachybacterium species with validly published names were between 97.4 and 94.2 %. However, the DNA-DNA hybridization values between strain KWS-1T and the five most closely related species were less than the threshold value for species discrimination. The major lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylserine and the major quinone was menaquinone MK-7. The DNA G+C content of strain KWS-1T was 71.8 mol%. The above data in combination with the phenotypic distinctiveness of strain KWS-1T from other reference strains clearly indicate that the strain represents a novel species, for which the name Brachybacterium aquaticum sp. nov. is proposed. The type strain is KWS-1T (=MTCC 11836T=DSM 28796T=JCM 30059T).