Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gustav Berggren is active.

Publication


Featured researches published by Gustav Berggren.


Nature | 2013

Biomimetic assembly and activation of [FeFe]-hydrogenases

Gustav Berggren; Agnieszka Adamska; Camilla Lambertz; Trevor R. Simmons; Julian Esselborn; Mohamed Atta; Serge Gambarelli; Jean-Marie Mouesca; Eduard Reijerse; Wolfgang Lubitz; Thomas Happe; Vincent Artero; Marc Fontecave

Hydrogenases are the most active molecular catalysts for hydrogen production and uptake, and could therefore facilitate the development of new types of fuel cell. In [FeFe]-hydrogenases, catalysis takes place at a unique di-iron centre (the [2Fe] subsite), which contains a bridging dithiolate ligand, three CO ligands and two CN– ligands. Through a complex multienzymatic biosynthetic process, this [2Fe] subsite is first assembled on a maturation enzyme, HydF, and then delivered to the apo-hydrogenase for activation. Synthetic chemistry has been used to prepare remarkably similar mimics of that subsite, but it has failed to reproduce the natural enzymatic activities thus far. Here we show that three synthetic mimics (containing different bridging dithiolate ligands) can be loaded onto bacterial Thermotoga maritima HydF and then transferred to apo-HydA1, one of the hydrogenases of Chlamydomonas reinhardtii algae. Full activation of HydA1 was achieved only when using the HydF hybrid protein containing the mimic with an azadithiolate bridge, confirming the presence of this ligand in the active site of native [FeFe]-hydrogenases. This is an example of controlled metalloenzyme activation using the combination of a specific protein scaffold and active-site synthetic analogues. This simple methodology provides both new mechanistic and structural insight into hydrogenase maturation and a unique tool for producing recombinant wild-type and variant [FeFe]-hydrogenases, with no requirement for the complete maturation machinery.


Inorganic Chemistry | 2014

Cobaloxime-Based Artificial Hydrogenases

Marine Bacchi; Gustav Berggren; Jens Niklas; Elias Veinberg; Michael W. Mara; Megan L. Shelby; Oleg G. Poluektov; Lin X. Chen; David M. Tiede; Christine Cavazza; Martin J. Field; Marc Fontecave; Vincent Artero

Cobaloximes are popular H2 evolution molecular catalysts but have so far mainly been studied in nonaqueous conditions. We show here that they are also valuable for the design of artificial hydrogenases for application in neutral aqueous solutions and report on the preparation of two well-defined biohybrid species via the binding of two cobaloxime moieties, {Co(dmgH)2} and {Co(dmgBF2)2} (dmgH2 = dimethylglyoxime), to apo Sperm-whale myoglobin (SwMb). All spectroscopic data confirm that the cobaloxime moieties are inserted within the binding pocket of the SwMb protein and are coordinated to a histidine residue in the axial position of the cobalt complex, resulting in thermodynamically stable complexes. Quantum chemical/molecular mechanical docking calculations indicated a coordination preference for His93 over the other histidine residue (His64) present in the vicinity. Interestingly, the redox activity of the cobalt centers is retained in both biohybrids, which provides them with the catalytic activity for H2 evolution in near-neutral aqueous conditions.


Dalton Transactions | 2009

Two tetranuclear Mn-complexes as biomimetic models of the oxygen evolving complex in Photosystem II. A synthesis, characterisation and reactivity study

Gustav Berggren; Anders Thapper; Ping Huang; Philipp Kurz; Lars Eriksson; Stenbjörn Styring; Magnus F. Anderlund

In this work we report the preparation of two metallamacrocyclic tetranuclear manganese(II) complexes, [L1(4)Mn4](ClO4)4 and [L2(4)Mn4](ClO4)4 where L1 and L2 are the anions of the heptadentate ligands 2-((2-(bis(pyridin-2-ylmethyl)amino)ethyl)(methyl)amino)acetic acid and 2-(benzyl(2-(bis(pyridin-2-ylmethyl)amino)ethyl)amino)acetic acid), respectively. The complexes have been fully characterized by ESI-MS, elemental analysis, single-crystal X-ray diffraction, magnetic susceptibility, and EPR spectroscopy. Electrochemical reactions as well as reactions with different chemical redox reagents have been performed and a reversible two electron oxidation per manganese ion has been identified. The reaction of [L1(4)Mn4](ClO4)4 with oxone or cerium(IV) results in the evolution of oxygen which makes this system interesting for future studies in the search for a functional mimic of the oxygen evolving complex in Photosystem II.


Journal of Biological Chemistry | 2012

4-Demethylwyosine Synthase from Pyrococcus abyssi Is a Radical-S-adenosyl-l-methionine Enzyme with an Additional [4Fe-4S]+2 Cluster That Interacts with the Pyruvate Co-substrate

Phanélie Perche-Letuvée; Velavan Kathirvelu; Gustav Berggren; Martin Clémancey; Jean-Marc Latour; Vincent Maurel; Thierry Douki; Jean Armengaud; Etienne Mulliez; Marc Fontecave; Ricardo Garcia-Serres; Serge Gambarelli; Mohamed Atta

Background: 4-Demethylwyosine synthase (TYW1) is a tRNA-modifying metalloenzyme involved in the biosynthesis of wyosine. Results: TYW1 enzyme belongs to the Radical-SAM superfamily with two Fe-S clusters involved in catalysis. Conclusion: The canonical Radical-SAM cluster binds and activates SAM co-factor, whereas the additional [4Fe-4S] cluster is shown to interact with the pyruvate co-substrate. Significance: This study helps to understand how radical-SAM enzymes with two Fe-S centers can synergistically achieve challenging radical insertion reactions. Wybutosine and its derivatives are found in position 37 of tRNA encoding Phe in eukaryotes and archaea. They are believed to play a key role in the decoding function of the ribosome. The second step in the biosynthesis of wybutosine is catalyzed by TYW1 protein, which is a member of the well established class of metalloenzymes called “Radical-SAM.” These enzymes use a [4Fe-4S] cluster, chelated by three cysteines in a CX3CX2C motif, and S-adenosyl-l-methionine (SAM) to generate a 5′-deoxyadenosyl radical that initiates various chemically challenging reactions. Sequence analysis of TYW1 proteins revealed, in the N-terminal half of the enzyme beside the Radical-SAM cysteine triad, an additional highly conserved cysteine motif. In this study we show by combining analytical and spectroscopic methods including UV-visible absorption, Mössbauer, EPR, and HYSCORE spectroscopies that these additional cysteines are involved in the coordination of a second [4Fe-4S] cluster displaying a free coordination site that interacts with pyruvate, the second substrate of the reaction. The presence of two distinct iron-sulfur clusters on TYW1 is reminiscent of MiaB, another tRNA-modifying metalloenzyme whose active form was shown to bind two iron-sulfur clusters. A possible role for the second [4Fe-4S] cluster in the enzyme activity is discussed.


Journal of Biological Chemistry | 2012

4-demethylwyosine synthase from Pyrococcus abyssi is a Radical-SAM enzyme with an additional [4Fe-4S]+2 cluster which interacts with the pyruvate co-substrate

Phanélie Perche-Letuvée; Velavan Kathirvelu; Gustav Berggren; Martin Clémancey; Jean-Marc Latour; Vincent Maurel; Thierry Douki; Jean Armengaud; Etienne Mulliez; Marc Fontecave; Ricardo Garcia-Serres; Serge Gambarelli; Mohamed Atta

Background: 4-Demethylwyosine synthase (TYW1) is a tRNA-modifying metalloenzyme involved in the biosynthesis of wyosine. Results: TYW1 enzyme belongs to the Radical-SAM superfamily with two Fe-S clusters involved in catalysis. Conclusion: The canonical Radical-SAM cluster binds and activates SAM co-factor, whereas the additional [4Fe-4S] cluster is shown to interact with the pyruvate co-substrate. Significance: This study helps to understand how radical-SAM enzymes with two Fe-S centers can synergistically achieve challenging radical insertion reactions. Wybutosine and its derivatives are found in position 37 of tRNA encoding Phe in eukaryotes and archaea. They are believed to play a key role in the decoding function of the ribosome. The second step in the biosynthesis of wybutosine is catalyzed by TYW1 protein, which is a member of the well established class of metalloenzymes called “Radical-SAM.” These enzymes use a [4Fe-4S] cluster, chelated by three cysteines in a CX3CX2C motif, and S-adenosyl-l-methionine (SAM) to generate a 5′-deoxyadenosyl radical that initiates various chemically challenging reactions. Sequence analysis of TYW1 proteins revealed, in the N-terminal half of the enzyme beside the Radical-SAM cysteine triad, an additional highly conserved cysteine motif. In this study we show by combining analytical and spectroscopic methods including UV-visible absorption, Mössbauer, EPR, and HYSCORE spectroscopies that these additional cysteines are involved in the coordination of a second [4Fe-4S] cluster displaying a free coordination site that interacts with pyruvate, the second substrate of the reaction. The presence of two distinct iron-sulfur clusters on TYW1 is reminiscent of MiaB, another tRNA-modifying metalloenzyme whose active form was shown to bind two iron-sulfur clusters. A possible role for the second [4Fe-4S] cluster in the enzyme activity is discussed.


Chemsuschem | 2015

A Systematic Comparative Study of Hydrogen-Evolving Molecular Catalysts in Aqueous Solutions

Souvik Roy; Marine Bacchi; Gustav Berggren; Vincent Artero

We describe here a systematic, reliable, and fast screening method that allows the comparison of H2-forming catalysts that work under aqueous conditions with two readily prepared chemical reductants and two commonly used photosensitizers. This method uses a Clark-type microsensor for H2 detection and complements previous methods based on rotating disk electrode measurements. The efficiencies of a series of H2 -producing catalysts based on Co, Ni, Fe, and Pt were investigated in aqueous solutions under thermal conditions with europium(II) reductants and under photochemical conditions in the presence of two different photosensitizers {[Ru(bipy)3]Cl2(bipy=2,2-bipyridine) and eosin-Y} and sacrificial electron donors (ascorbate and triethanolamine, respectively). The majority of catalysts tested were active only under specific conditions. However, our results also demonstrate the impressive versatility of a group of Co catalysts, which were able to produce H2 under different reducing conditions and at various pH values. In particular, a cobaloxime, [Co(dmgH)2(H2O)2] (dmgH2 =dimethylglyoxime), and a cobalt tetraazamacrocyclic complex, {Co(CR)Cl2}(+) [CR=2,12-dimethyl-3,7,11,17-tetraazabicylo(11.3.1)heptadeca-1(17),2,11,13,15-pentaene], displayed excellent catalytic rates under the studied conditions, and the best rates were observed under thermal conditions.


Inorganic Chemistry | 2011

Mechanistic studies on the water-oxidizing reaction of homogeneous manganese-based catalysts: isolation and characterization of a suggested catalytic intermediate.

Gustav Berggren; Anders Thapper; Ping Huang; Lars Eriksson; Stenbjörn Styring; Magnus F. Anderlund

The synthesis, isolation, and characterization of two high-valent manganese dimers with isomeric ligands are reported. The complexes are synthesized and crystallized from solutions of low-valent precursors exposed to tert-butyl hydroperoxide. The crystal structures display centrosymmetric complexes consisting of Mn(2)(IV,IV)(μ-O)(2) cores, with one ligand coordinating to each manganese. The ligands coordinate with the diaminoethane backbone, the carboxylate, and one of the two pyridines, while the second pyridine is noncoordinating. The activity of these complexes, under water oxidation conditions, is discussed in light of a proposed mechanism for water oxidation, in which this type of complexes have been suggested as a key intermediate.


Life | 2015

The Origin and Evolution of Ribonucleotide Reduction

Daniel Lundin; Gustav Berggren; Derek T. Logan; Britt-Marie Sjöberg

Ribonucleotide reduction is the only pathway for de novo synthesis of deoxyribonucleotides in extant organisms. This chemically demanding reaction, which proceeds via a carbon-centered free radical, is catalyzed by ribonucleotide reductase (RNR). The mechanism has been deemed unlikely to be catalyzed by a ribozyme, creating an enigma regarding how the building blocks for DNA were synthesized at the transition from RNA- to DNA-encoded genomes. While it is entirely possible that a different pathway was later replaced with the modern mechanism, here we explore the evolutionary and biochemical limits for an origin of the mechanism in the RNA + protein world and suggest a model for a prototypical ribonucleotide reductase (protoRNR). From the protoRNR evolved the ancestor to modern RNRs, the urRNR, which diversified into the modern three classes. Since the initial radical generation differs between the three modern classes, it is difficult to establish how it was generated in the urRNR. Here we suggest a model that is similar to the B12-dependent mechanism in modern class II RNRs.


Biochemistry | 2016

Room-Temperature Energy-Sampling Kβ X-ray Emission Spectroscopy of the Mn4Ca Complex of Photosynthesis Reveals Three Manganese-Centered Oxidation Steps and Suggests a Coordination Change Prior to O2 Formation.

Ivelina Zaharieva; Petko Chernev; Gustav Berggren; Magnus F. Anderlund; Stenbjörn Styring; Holger Dau; Michael Haumann

In oxygenic photosynthesis, water is oxidized and dioxygen is produced at a Mn4Ca complex bound to the proteins of photosystem II (PSII). Valence and coordination changes in its catalytic S-state cycle are of great interest. In room-temperature (in situ) experiments, time-resolved energy-sampling X-ray emission spectroscopy of the Mn Kβ1,3 line after laser-flash excitation of PSII membrane particles was applied to characterize the redox transitions in the S-state cycle. The Kβ1,3 line energies suggest a high-valence configuration of the Mn4Ca complex with Mn(III)3Mn(IV) in S0, Mn(III)2Mn(IV)2 in S1, Mn(III)Mn(IV)3 in S2, and Mn(IV)4 in S3 and, thus, manganese oxidation in each of the three accessible oxidizing transitions of the water-oxidizing complex. There are no indications of formation of a ligand radical, thus rendering partial water oxidation before reaching the S4 state unlikely. The difference spectra of both manganese Kβ1,3 emission and K-edge X-ray absorption display different shapes for Mn(III) oxidation in the S2 → S3 transition when compared to Mn(III) oxidation in the S1 → S2 transition. Comparison to spectra of manganese compounds with known structures and oxidation states and varying metal coordination environments suggests a change in the manganese ligand environment in the S2 → S3 transition, which could be oxidation of five-coordinated Mn(III) to six-coordinated Mn(IV). Conceivable options for the rearrangement of (substrate) water species and metal-ligand bonding patterns at the Mn4Ca complex in the S2 → S3 transition are discussed.


Journal of Physics: Conference Series | 2009

Towards a comprehensive X-ray approach for studying the photosynthetic manganese complex–XANES, Kα/Kβ/Kβ-satellite emission lines, RIXS, and comparative computational approaches for selected model complexes

Ivelina Zaharieva; Petko Chernev; Marcel Risch; L Gerencser; Gustav Berggren; Denys Shevchenko; Magnus F. Anderlund; Tsu-Chien Weng; Michael Haumann; Holger Dau

Advanced X-ray spectroscopy experiments can contribute to elucidation of the mechanism of water oxidation in biological (tetra-manganese complex of Photosystem II) and artificial systems. Although the electronic structure of the catalytic metal site is of high interest, it is experimentally not easily accessible. Therefore, we and other researchers are working towards a comprehensive approach involving a combination of methods, namely (1) quantitative analysis of X-ray absorption near-edge structure (XANES) spectra collected at the K-edge and, in the long run, at the L-edge of manganese; (2) high-resolution X-ray emission spectroscopy (XES) of Kα and Kβ lines, (3) two-dimensional resonant inelastic X-ray scattering (RIXS) spectra. Collection of these spectroscopic data sets requires state-of-the-art synchrotron radiation facilities as well as experimental strategies to minimize the radiation-induced modifications of the samples. Data analysis requires the use and development of appropriate theoretical tools. Here, we present exemplary data collected for three multi-nuclear synthetic Mn complexes with the Mn ions in the oxidation states II, III, and IV, and for MnVII of the permanganate ion. Emission spectra are calculated for the MnVII ion using both multiple-scattering (MS) approach and time-dependent density functional theory (TDDFT).

Collaboration


Dive into the Gustav Berggren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent Artero

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohamed Atta

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge