Gustav Häger
Linköping University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gustav Häger.
british machine vision conference | 2014
Martin Danelljan; Gustav Häger; Fahad Shahbaz Khan; Michael Felsberg
Robust scale estimation is a challenging problem in visual object tracking. Most existing methods fail to handle large scale variations in complex image sequences. This paper presents a novel appro ...
european conference on computer vision | 2016
Matej Kristan; Roman P. Pflugfelder; Aleš Leonardis; Jiri Matas; Luka Cehovin; Georg Nebehay; Tomas Vojir; Gustavo Fernández; Alan Lukezic; Aleksandar Dimitriev; Alfredo Petrosino; Amir Saffari; Bo Li; Bohyung Han; CherKeng Heng; Christophe Garcia; Dominik Pangersic; Gustav Häger; Fahad Shahbaz Khan; Franci Oven; Horst Bischof; Hyeonseob Nam; Jianke Zhu; Jijia Li; Jin Young Choi; Jin-Woo Choi; João F. Henriques; Joost van de Weijer; Jorge Batista; Karel Lebeda
Visual tracking has attracted a significant attention in the last few decades. The recent surge in the number of publications on tracking-related problems have made it almost impossible to follow the developments in the field. One of the reasons is that there is a lack of commonly accepted annotated data-sets and standardized evaluation protocols that would allow objective comparison of different tracking methods. To address this issue, the Visual Object Tracking (VOT) workshop was organized in conjunction with ICCV2013. Researchers from academia as well as industry were invited to participate in the first VOT2013 challenge which aimed at single-object visual trackers that do not apply pre-learned models of object appearance (model-free). Presented here is the VOT2013 benchmark dataset for evaluation of single-object visual trackers as well as the results obtained by the trackers competing in the challenge. In contrast to related attempts in tracker benchmarking, the dataset is labeled per-frame by visual attributes that indicate occlusion, illumination change, motion change, size change and camera motion, offering a more systematic comparison of the trackers. Furthermore, we have designed an automated system for performing and evaluating the experiments. We present the evaluation protocol of the VOT2013 challenge and the results of a comparison of 27 trackers on the benchmark dataset. The dataset, the evaluation tools and the tracker rankings are publicly available from the challenge website (http://votchallenge.net).
international conference on computer vision | 2015
Martin Danelljan; Gustav Häger; Fahad Shahbaz Khan; Michael Felsberg
Robust and accurate visual tracking is one of the most challenging computer vision problems. Due to the inherent lack of training data, a robust approach for constructing a target appearance model is crucial. Recently, discriminatively learned correlation filters (DCF) have been successfully applied to address this problem for tracking. These methods utilize a periodic assumption of the training samples to efficiently learn a classifier on all patches in the target neighborhood. However, the periodic assumption also introduces unwanted boundary effects, which severely degrade the quality of the tracking model. We propose Spatially Regularized Discriminative Correlation Filters (SRDCF) for tracking. A spatial regularization component is introduced in the learning to penalize correlation filter coefficients depending on their spatial location. Our SRDCF formulation allows the correlation filters to be learned on a significantly larger set of negative training samples, without corrupting the positive samples. We further propose an optimization strategy, based on the iterative Gauss-Seidel method, for efficient online learning of our SRDCF. Experiments are performed on four benchmark datasets: OTB-2013, ALOV++, OTB-2015, and VOT2014. Our approach achieves state-of-the-art results on all four datasets. On OTB-2013 and OTB-2015, we obtain an absolute gain of 8.0% and 8.2% respectively, in mean overlap precision, compared to the best existing trackers.
international conference on computer vision | 2015
Martin Danelljan; Gustav Häger; Fahad Shahbaz Khan; Michael Felsberg
Visual object tracking is a challenging computer vision problem with numerous real-world applications. This paper investigates the impact of convolutional features for the visual tracking problem. We propose to use activations from the convolutional layer of a CNN in discriminative correlation filter based tracking frameworks. These activations have several advantages compared to the standard deep features (fully connected layers). Firstly, they miti-gate the need of task specific fine-tuning. Secondly, they contain structural information crucial for the tracking problem. Lastly, these activations have low dimensionality. We perform comprehensive experiments on three benchmark datasets: OTB, ALOV300++ and the recently introduced VOT2015. Surprisingly, different to image classification, our results suggest that activations from the first layer provide superior tracking performance compared to the deeper layers. Our results further show that the convolutional features provide improved results compared to standard hand-crafted features. Finally, results comparable to state-of-the-art trackers are obtained on all three benchmark datasets.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2017
Martin Danelljan; Gustav Häger; Fahad Shahbaz Khan; Michael Felsberg
Accurate scale estimation of a target is a challenging research problem in visual object tracking. Most state-of-the-art methods employ an exhaustive scale search to estimate the target size. The exhaustive search strategy is computationally expensive and struggles when encountered with large scale variations. This paper investigates the problem of accurate and robust scale estimation in a tracking-by-detection framework. We propose a novel scale adaptive tracking approach by learning separate discriminative correlation filters for translation and scale estimation. The explicit scale filter is learned online using the target appearance sampled at a set of different scales. Contrary to standard approaches, our method directly learns the appearance change induced by variations in the target scale. Additionally, we investigate strategies to reduce the computational cost of our approach. Extensive experiments are performed on the OTB and the VOT2014 datasets. Compared to the standard exhaustive scale search, our approach achieves a gain of 2.5 percent in average overlap precision on the OTB dataset. Additionally, our method is computationally efficient, operating at a 50 percent higher frame rate compared to the exhaustive scale search. Our method obtains the top rank in performance by outperforming 19 state-of-the-art trackers on OTB and 37 state-of-the-art trackers on VOT2014.
computer vision and pattern recognition | 2016
Martin Danelljan; Gustav Häger; Fahad Shahbaz Khan; Michael Felsberg
Tracking-by-detection methods have demonstrated competitive performance in recent years. In these approaches, the tracking model heavily relies on the quality of the training set. Due to the limited amount of labeled training data, additional samples need to be extracted and labeled by the tracker itself. This often leads to the inclusion of corrupted training samples, due to occlusions, misalignments and other perturbations. Existing tracking-by-detection methods either ignore this problem, or employ a separate component for managing the training set. We propose a novel generic approach for alleviating the problem of corrupted training samples in tracking-by-detection frameworks. Our approach dynamically manages the training set by estimating the quality of the samples. Contrary to existing approaches, we propose a unified formulation by minimizing a single loss over both the target appearance model and the sample quality weights. The joint formulation enables corrupted samples to be downweighted while increasing the impact of correct ones. Experiments are performed on three benchmarks: OTB-2015 with 100 videos, VOT-2015 with 60 videos, and Temple-Color with 128 videos. On the OTB-2015, our unified formulation significantly improves the baseline, with a gain of 3:8% in mean overlap precision. Finally, our method achieves state-of-the-art results on all three datasets.
international conference on computer vision | 2015
Michael Felsberg; Amanda Berg; Gustav Häger; Jörgen Ahlberg; Matej Kristan; Jiri Matas; Aleš Leonardis; Luka Cehovin; Gustavo Fernández; Tomas Vojir; Georg Nebehay; Roman P. Pflugfelder
The Thermal Infrared Visual Object Tracking challenge 2015, VOT-TIR2015, aims at comparing short-term single-object visual trackers that work on thermal infrared (TIR) sequences and do not apply pre-learned models of object appearance. VOT-TIR2015 is the first benchmark on short-term tracking in TIR sequences. Results of 24 trackers are presented. For each participating tracker, a short description is provided in the appendix. The VOT-TIR2015 challenge is based on the VOT2013 challenge, but introduces the following novelties: (i) the newly collected LTIR (Link -- ping TIR) dataset is used, (ii) the VOT2013 attributes are adapted to TIR data, (iii) the evaluation is performed using insights gained during VOT2013 and VOT2014 and is similar to VOT2015.
scandinavian conference on image analysis | 2015
Martin Danelljan; Gustav Häger; Fahad Shahbaz Khan; Michael Felsberg
Visual object tracking is a classical, but still open research problem in computer vision, with many real world applications. The problem is challenging due to several factors, such as illumination variation, occlusions, camera motion and appearance changes. Such problems can be alleviated by constructing robust, discriminative and computationally efficient visual features. Recently, biologically-inspired channel representations [9] have shown to provide promising results in many applications ranging from autonomous driving to visual tracking.
european conference on computer vision | 2016
Michael Felsberg; Matej Kristan; Aleš Leonardis; Roman P. Pflugfelder; Gustav Häger; Amanda Berg; Abdelrahman Eldesokey; Jörgen Ahlberg; Luka Cehovin; Tomáš Vojír̃; Alan Lukežič; Gustavo Fernández; Alfredo Petrosino; Álvaro García-Martín; Andres Solis Montero; Anton Varfolomieiev; Aykut Erdem; Bohyung Han; Chang-Ming Chang; Dawei Du; Erkut Erdem; Fahad Shahbaz Khan; Fatih Porikli; Fei Zhao; Filiz Bunyak; Francesco Battistone; Gao Zhu; Hongdong Li; Honggang Qi; Horst Bischof
The Thermal Infrared Visual Object Tracking challenge 2015, VOT-TIR2015, aims at comparing short-term single-object visual trackers that work on thermal infrared (TIR) sequences and do not apply pre-learned models of object appearance. VOT-TIR2015 is the first benchmark on short-term tracking in TIR sequences. Results of 24 trackers are presented. For each participating tracker, a short description is provided in the appendix. The VOT-TIR2015 challenge is based on the VOT2013 challenge, but introduces the following novelties: (i) the newly collected LTIR (Link -- ping TIR) dataset is used, (ii) the VOT2013 attributes are adapted to TIR data, (iii) the evaluation is performed using insights gained during VOT2013 and VOT2014 and is similar to VOT2015.
international joint conference on computer vision imaging and computer graphics theory and applications | 2018
Gustav Häger; Michael Felsberg; Fahad Shahbaz Khan
Recent years have witnessed a significant leap in visual object tracking performance mainly due to powerfulfeatures, sophisticated learning methods and the introduction of benchmark datasets. Despi ...