Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gustave Simo is active.

Publication


Featured researches published by Gustave Simo.


Acta Tropica | 2002

Characterization of Trypanosoma brucei s.l. subspecies by isoenzymes in domestic pigs from the Fontem sleeping sickness focus of Cameroon

Stephenson W. Nkinin; Flobert Njiokou; L Penchenier; P Grébaut; Gustave Simo; Stéphane Herder

Though it has been established that domestic animals (especially the pig) are potential reservoir hosts for Trypanosoma brucei gambiense in West Africa, there is little data to this effect concerning Central Africa. Instead, some previous authors report the absence of Trypanozoon type trypanosomes in domestic animals in Cameroon. Thirty-two domestic pigs were sampled by KIVI (kit for in vitro isolation) of trypanosomes in the northern region (Bechati) of the Fontem sleeping sickness focus of Cameroon. Twenty-one of these were found positive, from 15 of which 17 isolates were successfully obtained. Isoenzyme characterization revealed that isolates from 4 of the 15 pigs belonged to zymodemes associated with T. brucei gambiense group 1. The prevalence of this disease in the local human population is, however, very low. It is evident from this study that the domestic pig may be a potential reservoir host for T. brucei gambiense in the Fontem focus. There is, however, need for an extensive study on domestic animals in Cameroon and other neighbouring countries for a better comprehension of the epidemiology of sleeping sickness within the Central African region.


Infection, Genetics and Evolution | 2010

Population genetic structure of Central African Trypanosoma brucei gambiense isolates using microsatellite DNA markers

Gustave Simo; Flobert Njiokou; Christopher Tume; Smiths Lueong; Thierry De Meeûs; Gérard Cuny; Tazoacha Asonganyi

Genetic variation of microsatellite loci is a widely used method for the analysis of population genetic structure of microorganisms. Seven microsatellite markers were used here to characterize Trypanosoma brucei gambiense isolates from Central Africa sub-region in order to improve knowledge on the population genetic structure of this subspecies. These markers confirmed the low genetic polymorphism within Central African T. b. gambiense isolates from the same focus and strong differentiation between different foci. The presence of many multilocus genotypes of T. b. gambiense and the excess of heterozygotes found in this study play in favour of a clonal reproduction of this parasite. But some data may be indicative of a unique recombination event in one subsample. The high F(ST) value indicates low migration rates between T. b. gambiense subpopulations (foci). Very negative F(IS) suggests fairly small clonal population sizes of this pathogen in the different human trypanosomosis foci of Central Africa.


Acta Tropica | 2010

Tsetse fly blood meal modification and trypanosome identification in two sleeping sickness foci in the forest of southern Cameroon.

Oumarou Farikou; Flobert Njiokou; Gustave Simo; Tazoacha Asonganyi; Gérard Cuny; Anne Geiger

The blood meal origins of 222 tsetse flies (213 Glossina palpalis palpalis, 7 Glossina pallicera pallicera, one Glossina nigrofusca and one Glossina caliginea) caught in 2008 in two Human African trypanosomiasis foci (Bipindi and Campo) of south Cameroon were investigated. 88.7% of tsetse flies blood meals were identified using the heteroduplex method and the origin of the remaining blood meals (11.3%) was identified by sequencing the cytochrome B gene. Most of the meals were from humans (45.9%) and pigs (37.4%), 16.7% from wild animals. Interestingly, new tsetse fly hosts including turtle (Trionyx and Kinixys) and snake (Python sebae) were identified. Significant differences were recorded between Bipindi where the blood meals from pigs were predominant (66.7% vs 23.5% from humans) and Campo where blood meals from humans were predominant (62.9% vs 22.7% from pigs). Comparison with the data recorded in 2004 in the same foci (and with the same molecular approach) demonstrated significant modifications of the feeding patterns: increase in blood meals from pigs in Bipindi (66.7% in 2008 vs 44.8% in 2004) and in Campo (20.5% in 2008 vs 6.8% in 2004), decrease in that from human (significant in Bipindi only). 12.6%, 8.1% and 2.7% of the flies were, respectively, Trypanosoma congolense forest type, Trypanosoma congolense savannah type and Trypanosoma brucei gambiense infected. These results demonstrate that tsetse fly feeding patterns can be specific of a given area and can evolve rapidly with time. They show an active circulation of a variety of trypanosomes in sleeping sickness foci of southern Cameroon.


Parasite | 2011

Trypanosoma vivax, T. congolense “forest type” and T. simiae: prevalence in domestic animals of sleeping sickness foci of Cameroon

H. Nimpaye; Flobert Njiokou; T. Njine; Guy Roger Njitchouang; Gérard Cuny; S. Herder; Tazoacha Asonganyi; Gustave Simo

In order to better understand the epidemiology of Human and Animal trypanosomiasis that occur together in sleeping sickness foci, a study of prevalences of animal parasites (Trypanosoma vivax, T. congolense “forest type”, and T. simiae) infections was conducted on domestic animals to complete the previous work carried on T. brucei gambiense prevalence using the same animal sample. 875 domestic animals, including 307 pigs, 264 goats, 267 sheep and 37 dogs were sampled in the sleeping sickness foci of Bipindi, Campo, Doumé and Fontem in Cameroon. The polymerase chain reaction (PCR) based method was used to identify these trypanosome species. A total of 237 (27.08%) domestic animals were infected by at least one trypanosome species. The prevalence of T. vivax, T. congolense “forest type” and T. simiae were 20.91%, 11.42% and 0.34% respectively. The prevalences of T. vivax and T. congolense “forest type” differed significantly between the animal species and between the foci (p < 0.0001); however, these two trypanosomes were found in all animal species as well as in all the foci subjected to the study. The high prevalences of T. vivax and T. congolense “forest type” in Bipindi and Fontem-Center indicate their intense transmission in these foci.


Journal of Proteomics | 2011

Transcriptomics and proteomics in human African trypanosomiasis: Current status and perspectives

Anne Geiger; Gustave Simo; Pascal Grébaut; Jean-Benoît Peltier; Gérard Cuny; Philippe Holzmuller

Human African trypanosomiasis, or sleeping sickness, is a neglected vector-borne parasitic disease caused by protozoa of the species Trypanosoma brucei sensu lato. Within this complex species, T. b. gambiense is responsible for the chronic form of sleeping sickness in Western and Central Africa, whereas T. b. rhodesiense causes the acute form of the disease in East Africa. Presently, 1.5 million disability-adjusted life years (DALYs) per year are lost due to sleeping sickness. In addition, on the basis of the mortality, the disease is ranked ninth out of 25 human infectious and parasitic diseases in Africa. Diagnosis is complex and needs the intervention of a specialized skilled staff; treatment is difficult and expensive and has potentially life-threatening side effects. The use of transcriptomic and proteomic technologies, currently in rapid development and increasing in sensitivity and discriminating power, is already generating a large panel of promising results. The objective of these technologies is to significantly increase our knowledge of the molecular mechanisms governing the parasite establishment in its vector, the development cycle of the parasite during the parasites intra-vector life, its interactions with the fly and the other microbial inhabitants of the gut, and finally human host-trypanosome interactions. Such fundamental investigations are expected to provide opportunities to identify key molecular events that would constitute accurate targets for further development of tools dedicated to field work for early, sensitive, and stage-discriminant diagnosis, epidemiology, new chemotherapy, and potentially vaccine development, all of which will contribute to fighting the disease. The present review highlights the contributions of the transcriptomic and proteomic analyses developed thus far in order to identify potential targets (genes or proteins) and biological pathways that may constitute a critical step in the identification of new targets for the development of new tools for diagnostic and therapeutic purposes.


Emerging Infectious Diseases | 2006

Human African Trypanosomiasis Transmission, Kinshasa, Democratic Republic of Congo

Gustave Simo; Philemon Mansinsa Diabakana; Victor Kande Betu Ku Mesu; Emile Zola Manzambi; Gaelle Ollivier; Tazoacha Asonganyi; Gérard Cuny; Pascal Grébaut

To investigate the epidemiology of human African trypanosomiasis (sleeping sickness) in Kinshasa, Democratic Republic of Congo, 2 entomologic surveys were conducted in 2005. Trypanosoma brucei gambiense and human-blood meals were found in tsetse fly midguts, which suggested active disease transmission. Vector control should be used to improve human African trypanosomiasis control efforts.


Parasites & Vectors | 2012

Identification of different trypanosome species in the mid-guts of tsetse flies of the Malanga (Kimpese) sleeping sickness focus of the Democratic Republic of Congo

Gustave Simo; Barberine Silatsa; Njiokou Flobert; Pascal Lutumba; Philémon Mansinsa; Joule Madinga; Emile Zola Manzambi; Reginald De Deken; Tazoacha Asonganyi

BackgroundThe Malanga sleeping sickness focus of the Democratic Republic of Congo has shown an epidemic evolution of disease during the last century. However, following case detection and treatment, the prevalence of the disease decreased considerably. No active survey has been undertaken in this focus for a couple of years. To understand the current epidemiological status of sleeping sickness as well as the animal African trypanosomiasis in the Malanga focus, we undertook the identification of tsetse blood meals as well as different trypanosome species in flies trapped in this focus.MethodsPyramidal traps were use to trap tsetse flies. All flies caught were identified and live flies were dissected and their mid-guts collected. Fly mid-gut was used for the molecular identification of the blood meal source, as well as for the presence of different trypanosome species.ResultsAbout 949 Glossina palpalis palpalis were trapped; 296 (31.2%) of which were dissected, 60 (20.3%) blood meals collected and 57 (19.3%) trypanosome infections identified. The infection rates were 13.4%, 5.1%, 3.5% and 0.4% for Trypanosoma congolense savannah type, Trypanosoma brucei s.l., Trypanosoma congolense forest type and Trypanosoma vivax, respectively. Three mixed infections including Trypanosoma brucei s.l. and Trypanosoma congolense savannah type, and one mixed infection of Trypanosoma vivax and Trypanosoma congolense savannah type were identified. Eleven Trypanosoma brucei gambiense infections were identified; indicating an active circulation of this trypanosome subspecies. Of all the identified blood meals, about 58.3% were identified as being taken on pigs, while 33.3% and 8.3% were from man and other mammals, respectively.ConclusionThe presence of Trypanosoma brucei in tsetse mid-guts associated with human blood meals is indicative of an active transmission of this parasite between tsetse and man. The considerable number of pig blood meals combined with the circulation of Trypanosoma brucei gambiense in this focus suggests a transmission cycle involving humans and domestic animals and could hamper eradication strategies. The various species of trypanosomes identified in the Malanga sleeping sickness focus indicates the coexistence of animal and human African Trypanosomiasis. The development of new strategies integrating control measures for human and animal trypanosomiasis may enable the reduction of the control costs in this locality.


Infection, Genetics and Evolution | 2013

Identification and genetic characterization of Trypanosoma congolense in domestic animals of Fontem in the South-West region of Cameroon.

Gustave Simo; Pythagore Fogue Sobgwi; Guy Roger Njitchouang; Flobert Njiokou; Jules Roger Kuiate; Gérard Cuny; Tazoacha Asonganyi

To understand the circulation and the spread of Trypanosoma congolense genotypes in animals of Fontem in the southwest region of Cameroon, T. congolense forest and T. congolense savannah were investigated in 397 domestic animals in eight villages. Out of the 397 domestic animals, 86 (21.7%) were found infected by trypanosomes, using the capillary tube centrifugation test. The PCR with specific primers identified 163 (41.1%) and 81 (20.4%) animals infected by T. congolense forest and T. congolense savannah, respectively; showing for the first time the circulation of T. congolense savannah in the Fontem region. No infection with T. congolense savannah was found in pigs whereas goats and sheep were infected by T. congolense forest and/or T. congolense savannah. The prevalence of trypanosomes varied significantly amongst villages and animal species. The genotyping of T. congolense forest positive samples using microsatellites markers showed that multiple genotypes occurred in 27.2% (44/163) of animals sampled, whereas single genotypes were found in 73.8% (119/163) of samples. Some alleles were found in all animal species as well as in all villages and were responsible for major genotypes, whereas others (rare alleles) were identified only in some animals of few villages. These rare alleles were characteristic of specific genotypes, assimilated to minor genotypes which can be spread in the region through tsetse flies. The microsatellite markers show a low genetic variability and an absence of sub-structuration within T. congolense forest. The analysis of the microsatellite data revealed a predominant clonal reproduction within T. congolense forest. Pigs were the animal species with the highest number of different genotypes of T. congolense forest. They seem to play an important epidemiological role in the propagation and spread of different genotypes of T. congolense.


The ISME Journal | 2015

Adult blood-feeding tsetse flies, trypanosomes, microbiota and the fluctuating environment in sub-Saharan Africa

Anne Geiger; Fleur Ponton; Gustave Simo

The tsetse fly vector transmits the protozoan Trypanosoma brucei, responsible for Human African Trypanosomiasis, one of the most neglected tropical diseases. Despite a recent decline in new cases, it is still crucial to develop alternative strategies to combat this disease. Here, we review the literature on the factors that influence trypanosome transmission from the fly vector to its vertebrate host (particularly humans). These factors include climate change effects to pathogen and vector development (in particular climate warming), as well as the distribution of host reservoirs. Finally, we present reports on the relationships between insect vector nutrition, immune function, microbiota and infection, to demonstrate how continuing research on the evolving ecology of these complex systems will help improve control strategies. In the future, such studies will be of increasing importance to understand how vector-borne diseases are spread in a changing world.


Journal of Invertebrate Pathology | 2013

The bacterial flora of tsetse fly midgut and its effect on trypanosome transmission

Illiassou Hamidou Soumana; Gustave Simo; Flobert Njiokou; Bernadette Tchicaya; Adly M.M. Abd-Alla; Gérard Cuny; Anne Geiger

The tsetse fly, Glossina palpalis is a vector of the trypanosome that causes sleeping sickness in humans and nagana in cattle along with associated human health problems and massive economic losses. The insect is also known to carry a number of symbionts such as Sodalis, Wigglesworthia, Wolbachia whose effects on the physiology of the insect have been studied in depth. However, effects of other bacterial flora on the physiology of the host and vector competence have received little attention. Epidemiological studies on tsetse fly populations from different geographic sites revealed the presence of a variety of bacteria in the midgut. The most common of the flora belong to the genera Entrobacter (most common), Enterococcus, and Acinetobacter. It was a little surprising to find such diversity in the tsetse midgut since the insect is monophagous consuming vertebrate blood only. Diversity of bacteria is normally associated with polyphagous insects. In contrast to the symbionts, the role of resident midgut bacterial flora on the physiology of the fly and vector competence remains to be elucidated. With regard, Sodalis glossinidius, our data showed that flies harbouring this symbiont have three times greater probability of being infected by trypanosomes than flies without the symbiont. The data delineated in these studies under score the need to carry out detailed investigations on the role of resident bacteria on the physiology of the fly and vector competence.

Collaboration


Dive into the Gustave Simo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal Grébaut

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Bruno Bucheton

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Gérard Cuny

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Geiger

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Mathurin Koffi

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Stéphane Herder

Institut de recherche pour le développement

View shared research outputs
Researchain Logo
Decentralizing Knowledge