Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gustavo Fuertes is active.

Publication


Featured researches published by Gustavo Fuertes.


European Biophysics Journal | 2011

A lipocentric view of peptide-induced pores

Gustavo Fuertes; Diana Giménez; Santi Esteban-Martín; Orlando L. Sánchez-Muñoz; Jesús Salgado

Although lipid membranes serve as effective sealing barriers for the passage of most polar solutes, nonmediated leakage is not completely improbable. A high activation energy normally keeps unassisted bilayer permeation at a very low frequency, but lipids are able to self-organize as pores even in peptide-free and protein-free membranes. The probability of leakage phenomena increases under conditions such as phase coexistence, external stress or perturbation associated to binding of nonlipidic molecules. Here, we argue that pore formation can be viewed as an intrinsic property of lipid bilayers, with strong similarities in the structure and mechanism between pores formed with participation of peptides, lipidic pores induced by different types of stress, and spontaneous transient bilayer defects driven by thermal fluctuations. Within such a lipocentric framework, amphipathic peptides are best described as pore-inducing rather than pore-forming elements. Active peptides bound to membranes can be understood as a source of internal surface tension which facilitates pore formation by diminishing the high activation energy barrier. This first or immediate action of the peptide has some resemblance to catalysis. However, the presence of membrane-active peptides has the additional effect of displacing the equilibrium towards the pore-open state, which is then maintained over long times, and reducing the size of initial individual pores. Thus, pore-inducing peptides, regardless of their sequence and oligomeric organization, can be assigned a double role of increasing the probability of pore formation in membranes to high levels as well as stabilizing these pores after they appear.


Biophysical Journal | 2010

Pores Formed by Baxα5 Relax to a Smaller Size and Keep at Equilibrium

Gustavo Fuertes; Ana J. García-Sáez; Santi Esteban-Martín; Diana Giménez; Orlando L. Sánchez-Muñoz; Petra Schwille; Jesús Salgado

Pores made by amphipathic cationic peptides (e.g., antimicrobials and fragments of pore-forming proteins) are typically studied by examining the kinetics of vesicle leakage after peptide addition or obtaining structural measurements in reconstituted peptide-lipid systems. In the first case, the pores have been considered transient phenomena that allow the relaxation of the peptide-membrane system. In the second, they correspond to equilibrium structures at minimum free energy. Here we reconcile both approaches by investigating the pore activity of the α5 fragment from the proapoptotic protein Bax (Baxα5) before and after equilibrium of peptide/vesicle complexes. Quenching assays on suspensions of large unilamellar vesicles suggest that in the presence of Baxα5, the vesicles maintain a leaky state for hours under equilibrium conditions. We proved and analyzed stable pores on single giant unilamellar vesicles (GUVs) in detail by monitoring the entrance of dyes added at different times after incubation with the peptide. When the GUVs came in contact with Baxα5, leakage started stochastically, was delayed for various periods of time, and in the majority of cases proceeded rapidly to completion. After hours in the presence of the peptide, the same individual GUVs that refilled completely at first instance maintained a porated state, which could be observed in subsequent leak-in events for serially added dyes. However, these long-term pores were smaller in size than the initial equilibration pores. Stable pores were also detected in GUVs made in the presence of Baxα5. The latter pores can be considered equilibrium states and may correspond to structures measured previously in bilayer stacks. Although pore formation may occur as a kinetic process, equilibrium pores may also be functionally relevant structures, especially in highly regulated systems such as the apoptotic mitochondrial pores induced by Bax.


Advances in Experimental Medicine and Biology | 2010

Permeabilization of the outer mitochondrial membrane by Bcl-2 proteins.

Ana J. García-Sáez; Gustavo Fuertes; Jacob Suckale; Jesús Salgado

The proteins of the Bcl-2 family regulate the release of the apoptotic factors from mitochondria during apoptosis, a key event in physiological cell death. Although their molecular mechanisms remain unclear, the Bcl-2 proteins have been proposed to directly control the permeability of the outer mitochondrial membrane by pore formation. Indeed, they share structural features with the pore forming domains of some bacterial toxins and they can give rise to proteolipidic pores in model membranes. The complex level of regulation needed to decide the fate of the cell is achieved by an intricate interaction network between different members of the family. Current models consider multiple parallel equilibria of activation and inhibition that determine whether the permeabilization of the mitochondrial outer membrane is induced or not.


Langmuir | 2011

Switchable Bactericidal Effects from Novel Silica-Coated Silver Nanoparticles Mediated by Light Irradiation

Gustavo Fuertes; Orlando L. Sánchez-Muñoz; Esteban Pedrueza; Kamal Abderrafi; Jesús Salgado; Ernesto Jiménez

Here we report on the triggering of antibacterial activity by a new type of silver nanoparticle coated with porous silica, Ag@silica, irradiated at their surface plasmon resonant frequency. The nanoparticles are able to bind readily to the surface of bacterial cells, although this does not affect bacterial growth since the silica shell largely attenuates the intrinsic toxicity of silver. However, upon simultaneous exposure to light corresponding to the absorption band of the nanoparticles, bacterial death is enhanced selectively on the irradiated zone. Because of the low power density used for the treatments, we discard thermal effects as the cause of cell killing. Instead, we propose that the increase in toxicity is due to the enhanced electromagnetic field in the proximity of the nanoparticles, which indirectly, most likely through induced photochemical reactions, is able to cause cell death.


Biophysical Journal | 2009

Influence of Whole-Body Dynamics on 15N PISEMA NMR Spectra of Membrane Proteins: A Theoretical Analysis

Santi Esteban-Martín; Erik Strandberg; Gustavo Fuertes; Anne S. Ulrich; Jesús Salgado

Membrane proteins and peptides exhibit a preferred orientation in the lipid bilayer while fluctuating in an anisotropic manner. Both the orientation and the dynamics have direct functional implications, but motions are usually not accessible, and structural descriptions are generally static. Using simulated data, we analyze systematically the impact of whole-body motions on the peptide orientations calculated from two-dimensional polarization inversion spin exchange at the magic angle (PISEMA) NMR. Fluctuations are found to have a significant effect on the observed spectra. Nevertheless, wheel-like patterns are still preserved, and it is possible to determine the average peptide tilt and azimuthal rotation angles using simple static models for the spectral fitting. For helical peptides undergoing large-amplitude fluctuations, as in the case of transmembrane monomers, improved fits can be achieved using an explicit dynamics model that includes Gaussian distributions of the orientational parameters. This method allows extracting the amplitudes of fluctuations of the tilt and azimuthal rotation angles. The analysis is further demonstrated by generating first a virtual PISEMA spectrum from a molecular dynamics trajectory of the model peptide, WLP23, in a lipid membrane. That way, the dynamics of the system from which the input spectrum originates is completely known at atomic detail and can thus be directly compared with the dynamic output obtained from the fit. We find that fitting our dynamics model to the polar index slant angles wheel gives an accurate description of the amplitude of underlying motions, together with the average peptide orientation.


PLOS ONE | 2010

Active Fragments from Pro- and Antiapoptotic BCL-2 Proteins Have Distinct Membrane Behavior Reflecting Their Functional Divergence

Yannis Guillemin; Jonathan Lopez; Diana Giménez; Gustavo Fuertes; Juan Garcia Valero; Loı̈c. J. Blum; Philippe Gonzalo; Jesús Salgado; Agnès Girard-Egrot; Abdel Aouacheria

Background The BCL-2 family of proteins includes pro- and antiapoptotic members acting by controlling the permeabilization of mitochondria. Although the association of these proteins with the outer mitochondrial membrane is crucial for their function, little is known about the characteristics of this interaction. Methodology/Principal Findings Here, we followed a reductionist approach to clarify to what extent membrane-active regions of homologous BCL-2 family proteins contribute to their functional divergence. Using isolated mitochondria as well as model lipid Langmuir monolayers coupled with Brewster Angle Microscopy, we explored systematically and comparatively the membrane activity and membrane-peptide interactions of fragments derived from the central helical hairpin of BAX, BCL-xL and BID. The results show a connection between the differing abilities of the assayed peptide fragments to contact, insert, destabilize and porate membranes and the activity of their cognate proteins in programmed cell death. Conclusion/Significance BCL-2 family-derived pore-forming helices thus represent structurally analogous, but functionally dissimilar membrane domains.


Advances in Experimental Medicine and Biology | 2010

Role of Membrane Lipids for the Activity of Pore Forming Peptides and Proteins

Gustavo Fuertes; Diana Giménez; Santi Esteban-Martín; Ana J. García-Sáez; Orlando Sánchez; Jesús Salgado

Bilayer lipids, far from being passive elements, have multiple roles in polypeptide-dependent pore formation. Lipids participate at all stages of the formation of pores by providing the binding site for proteins and peptides, conditioning their active structure and modulating the molecular reorganization of the membrane complex. Such general functions of lipids superimpose to other particular roles, from electrostatic and curvature effects to more specific actions in cases like cholesterol, sphingolipids or cardiolipin. Pores are natural phenomena in lipid membranes. Driven by membrane fluctuations and packing defects, transient water pores are related to spontaneous lipid flip-flop and non-assisted ion permeation. In the absence ofproteins or peptides, these are rare short living events, with properties dependent on the lipid composition of the membrane. Their frequency increases under conditions of internal membrane disturbance of the lipid packing, like in the presence of membrane-bound proteins or peptides. These latter molecules, in fact, form dynamic supramolecular assemblies together with the lipids and transmembrane pores are one of the possible structures of the complex. Active peptides and proteins can thus be considered inducers or enhancers of pores which increase their probability and lifetime by modifying the thermodynamic membrane balance. This includes destabilizing the membrane lamellar structure, lowering the activation energy for pore formation and stabilizing the open pore structure.


Biochemistry | 2009

Orientational Landscapes of Peptides in Membranes: Prediction of 2H NMR Couplings in a Dynamic Context

Santi Esteban-Martín; Diana Giménez; Gustavo Fuertes; Jesús Salgado

Unlike soluble proteins, membrane polypeptides face an anisotropic milieu. This imposes restraints on their orientation and provides a reference that makes structure prediction tractable by minimalistic thermodynamic models. Here we use this framework to build orientational distributions of monomeric membrane-bound peptides and to predict their expected solid-state (2)H NMR quadrupolar couplings when labeled at specific side chain positions. Using a complete rigid-body sampling of configurations relative to an implicit lipid membrane, peptide free energy landscapes are calculated. This allows us to obtain probability distributions of the peptide tilt, azimuthal rotation, and depth of membrane insertion. The orientational distributions are broad and originate from an interplay among the three relevant rigid-body degrees of freedom, which allows population of multiple states in shallow free energy minima. Remarkably, only when the orientational distributions are taken into account do we obtain a close correlation between predicted (2)H NMR splittings and values measured in experiments. Such a good correlation is not seen with splittings calculated from single configurations, being either the averaged or the lowest free energy state, showing there are distributions, rather than single structures, that best define the peptide-membrane systems. Moreover, we propose that these distributions contribute to the understanding of the rigid-body dynamics of the system.


Medical Laser Applications and Laser-Tissue Interactions V (2011), paper 80921M | 2011

Photoswitchable bactericidal effects from novel silica-coated silver nanoparticles

Gustavo Fuertes; Esteban Pedrueza; Kamal Abderrafi; Rafael Abargues; Orlando Sánchez; Juan Martínez-Pastor; Jesús Salgado; Ernesto Jiménez

The enhancement of the electromagnetic field in the surroundings of nanoparticles via surface plasmon resonance offers promising possibilities for biomedical applications. Here we report on the selective triggering of antibacterial activity using a new type of silver nanoparticles coated with silica, Ag@silica, irradiated at their surface plasmon frequency. The nanoparticles are able to bind readily to the surface of bacterial cells, although this does not affect bacterial growing since the silica shell largely attenuates the intrinsic toxicity of silver. However, upon simultaneous exposure to light corresponding to the absorption band of the nanoparticles, bacterial death is triggered selectively on the irradiated zone. Because of the low power density used in the treatments, we discard thermal effects as the cause of cell killing. Instead, we propose that the switched toxicity is due to the enhanced electromagnetic field in the proximity of the nanoparticles, which either directly (through membrane perturbation) or indirectly (through induced photochemical reactions) is able to cause cell death.


Iet Synthetic Biology | 2007

Vanillin cell sensor

G. Rodrigo; A. Montagud; A. Aparici; M.C. Aroca; M. Baguena; J. Carrera; C. Edo; P. Fernandez-De-Cordoba; A. Ferrando; Gustavo Fuertes; Diana Giménez; C. Mata; J.V. Medrano; C. Navarrete; E. Navarro; Jesús Salgado; P. Tortosa; J.F. Urchueguía; A. Jaramillo

Collaboration


Dive into the Gustavo Fuertes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne S. Ulrich

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Dmitri I. Svergun

European Bioinformatics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge