Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gustavo G.L. Costa is active.

Publication


Featured researches published by Gustavo G.L. Costa.


Genome Research | 2009

Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production

Juan Lucas Argueso; Marcelo Falsarella Carazzolle; Piotr A. Mieczkowski; Fabiana M. Duarte; Osmar V C Netto; Silvia K. Missawa; Felipe Galzerani; Gustavo G.L. Costa; Ramon Vidal; Melline F. Noronha; Margaret Dominska; Maria da Graça Stupiello Andrietta; Silvio Roberto Andrietta; Anderson Ferreira da Cunha; Luiz Humberto Gomes; Flavio Cesar Almeida Tavares; André Ricardo Alcarde; Fred S. Dietrich; John H. McCusker; Thomas D. Petes; Goncxalo A G Pereira

Bioethanol is a biofuel produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (approximately 2 SNPs/kb) and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, with breakpoints within repetitive DNA sequences. Despite its complex karyotype, this diploid, when sporulated, had a high frequency of viable spores. Hybrid diploids formed by outcrossing with the laboratory strain S288c also displayed good spore viability. Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures. We also explored features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high ethanol and cell mass production and high temperature and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation of a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies.


Brazilian Journal of Plant Physiology | 2006

Brazilian coffee genome project: an EST-based genomic resource

Luiz Gonzaga Esteves Vieira; Alan Carvalho Andrade; Carlos Augusto Colombo; Ana Heloneida de Araújo Moraes; Ângela Metha; Angélica Carvalho de Oliveira; Carlos Alberto Labate; Celso Luis Marino; Claudia B. Monteiro-Vitorello; Damares C. Monte; Éder A. Giglioti; Edna T. Kimura; Eduardo Romano; Eiko E. Kuramae; Eliana Gertrudes de Macedo Lemos; Elionor Rita Pereira de Almeida; Erika C. Jorge; Erika V.S. Albuquerque; Felipe Rodrigues da Silva; Felipe Vinecky; Haiko Enok Sawazaki; Hamza Fahmi A. Dorry; Helaine Carrer; Ilka Nacif Abreu; João A. N. Batista; João Batista Teixeira; João Paulo Kitajima; Karem Guimarães Xavier; Liziane Maria de Lima; Luis Eduardo Aranha Camargo

Coffee is one of the most valuable agricultural commodities and ranks second on international trade exchanges. The genus Coffea belongs to the Rubiaceae family which includes other important plants. The genus contains about 100 species but commercial production is based only on two species, Coffea arabica and Coffea canephora that represent about 70 % and 30 % of the total coffee market, respectively. The Brazilian Coffee Genome Project was designed with the objective of making modern genomics resources available to the coffee scientific community, working on different aspects of the coffee production chain. We have single-pass sequenced a total of 214,964 randomly picked clones from 37 cDNA libraries of C. arabica, C. canephora and C. racemosa, representing specific stages of cells and plant development that after trimming resulted in 130,792, 12,381 and 10,566 sequences for each species, respectively. The ESTs clustered into 17,982 clusters and 32,155 singletons. Blast analysis of these sequences revealed that 22 % had no significant matches to sequences in the National Center for Biotechnology Information database (of known or unknown function). The generated coffee EST database resulted in the identification of close to 33,000 different unigenes. Annotated sequencing results have been stored in an online database at http://www.lge.ibi.unicamp.br/cafe. Resources developed in this project provide genetic and genomic tools that may hold the key to the sustainability, competitiveness and future viability of the coffee industry in local and international markets.


DNA Research | 2013

The Genome Sequence of Leishmania (Leishmania) amazonensis: Functional Annotation and Extended Analysis of Gene Models

Fernando Real; Ramon Vidal; Marcelo Falsarella Carazzolle; Jorge Maurício Costa Mondego; Gustavo G.L. Costa; Roberto H. Herai; Martin Würtele; Lucas Miguel de Carvalho; Renata C. Ferreira; Renato A. Mortara; Clara Lúcia Barbiéri; Piotr A. Mieczkowski; José Franco da Silveira; Marcelo R. S. Briones; Gonçalo Amarante Guimarães Pereira; Diana Bahia

We present the sequencing and annotation of the Leishmania (Leishmania) amazonensis genome, an etiological agent of human cutaneous leishmaniasis in the Amazon region of Brazil. L. (L.) amazonensis shares features with Leishmania (L.) mexicana but also exhibits unique characteristics regarding geographical distribution and clinical manifestations of cutaneous lesions (e.g. borderline disseminated cutaneous leishmaniasis). Predicted genes were scored for orthologous gene families and conserved domains in comparison with other human pathogenic Leishmania spp. Carboxypeptidase, aminotransferase, and 3′-nucleotidase genes and ATPase, thioredoxin, and chaperone-related domains were represented more abundantly in L. (L.) amazonensis and L. (L.) mexicana species. Phylogenetic analysis revealed that these two species share groups of amastin surface proteins unique to the genus that could be related to specific features of disease outcomes and host cell interactions. Additionally, we describe a hypothetical hybrid interactome of potentially secreted L. (L.) amazonensis proteins and host proteins under the assumption that parasite factors mimic their mammalian counterparts. The model predicts an interaction between an L. (L.) amazonensis heat-shock protein and mammalian Toll-like receptor 9, which is implicated in important immune responses such as cytokine and nitric oxide production. The analysis presented here represents valuable information for future studies of leishmaniasis pathogenicity and treatment.


BMC Genomics | 2014

Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri, which causes frosty pod rot disease of cacao: mechanisms of the biotrophic and necrotrophic phases.

Lyndel W. Meinhardt; Gustavo G.L. Costa; Daniela P.T. Thomazella; Paulo José Pereira Lima Teixeira; Marcelo Falsarella Carazzolle; Stephan C. Schuster; John E. Carlson; Mark J. Guiltinan; Piotr A. Mieczkowski; Andrew D. Farmer; Thiruvarangan Ramaraj; Jayne Crozier; Robert E. Davis; Jonathan Shao; Rachel L. Melnick; Gonçalo Amarante Guimarães Pereira; Bryan A. Bailey

BackgroundThe basidiomycete Moniliophthora roreri is the causal agent of Frosty pod rot (FPR) disease of cacao (Theobroma cacao), the source of chocolate, and FPR is one of the most destructive diseases of this important perennial crop in the Americas. This hemibiotroph infects only cacao pods and has an extended biotrophic phase lasting up to sixty days, culminating in plant necrosis and sporulation of the fungus without the formation of a basidiocarp.ResultsWe sequenced and assembled 52.3 Mb into 3,298 contigs that represent the M. roreri genome. Of the 17,920 predicted open reading frames (OFRs), 13,760 were validated by RNA-Seq. Using read count data from RNA sequencing of cacao pods at 30 and 60 days post infection, differential gene expression was estimated for the biotrophic and necrotrophic phases of this plant-pathogen interaction. The sequencing data were used to develop a genome based secretome for the infected pods. Of the 1,535 genes encoding putative secreted proteins, 1,355 were expressed in the biotrophic and necrotrophic phases. Analysis of the data revealed secretome gene expression that correlated with infection and intercellular growth in the biotrophic phase and invasive growth and plant cellular death in the necrotrophic phase.ConclusionsGenome sequencing and RNA-Seq was used to determine and validate the Moniliophthora roreri genome and secretome. High sequence identity between Moniliophthora roreri genes and Moniliophthora perniciosa genes supports the taxonomic relationship with Moniliophthora perniciosa and the relatedness of this fungus to other basidiomycetes. Analysis of RNA-Seq data from infected plant tissues revealed differentially expressed genes in the biotrophic and necrotrophic phases. The secreted protein genes that were upregulated in the biotrophic phase are primarily associated with breakdown of the intercellular matrix and modification of the fungal mycelia, possibly to mask the fungus from plant defenses. Based on the transcriptome data, the upregulated secreted proteins in the necrotrophic phase are hypothesized to be actively attacking the plant cell walls and plant cellular components resulting in necrosis. These genes are being used to develop a new understanding of how this disease interaction progresses and to identify potential targets to reduce the impact of this devastating disease.


The Plant Cell | 2014

High-Resolution Transcript Profiling of the Atypical Biotrophic Interaction between Theobroma cacao and the Fungal Pathogen Moniliophthora perniciosa

Paulo José Pereira Lima Teixeira; Daniela P.T. Thomazella; Osvaldo Reis; Paula Favoretti Vital do Prado; Maria Carolina Scatolin do Rio; Gabriel Lorencini Fiorin; Juliana José; Gustavo G.L. Costa; Victor Augusti Negri; Jorge Maurício Costa Mondego; Piotr A. Mieczkowski; Gonçalo Amarante Guimarães Pereira

This work dissects the intriguing biotrophic interaction between Theobroma cacao and the fungus Moniliophthora perniciosa in the devastating witches’ broom disease. Infection by M. perniciosa leads to massive genetic reprogramming in cacao tissues, which culminates in the onset of premature senescence. A detailed molecular model of this peculiar plant-pathogen interaction is presented. Witches’ broom disease (WBD), caused by the hemibiotrophic fungus Moniliophthora perniciosa, is one of the most devastating diseases of Theobroma cacao, the chocolate tree. In contrast to other hemibiotrophic interactions, the WBD biotrophic stage lasts for months and is responsible for the most distinctive symptoms of the disease, which comprise drastic morphological changes in the infected shoots. Here, we used the dual RNA-seq approach to simultaneously assess the transcriptomes of cacao and M. perniciosa during their peculiar biotrophic interaction. Infection with M. perniciosa triggers massive metabolic reprogramming in the diseased tissues. Although apparently vigorous, the infected shoots are energetically expensive structures characterized by the induction of ineffective defense responses and by a clear carbon deprivation signature. Remarkably, the infection culminates in the establishment of a senescence process in the host, which signals the end of the WBD biotrophic stage. We analyzed the pathogen’s transcriptome in unprecedented detail and thereby characterized the fungal nutritional and infection strategies during WBD and identified putative virulence effectors. Interestingly, M. perniciosa biotrophic mycelia develop as long-term parasites that orchestrate changes in plant metabolism to increase the availability of soluble nutrients before plant death. Collectively, our results provide unique insight into an intriguing tropical disease and advance our understanding of the development of (hemi)biotrophic plant-pathogen interactions.


Journal of Molecular Evolution | 2010

Genes Acquired by Horizontal Transfer Are Potentially Involved in the Evolution of Phytopathogenicity in Moniliophthora perniciosa and Moniliophthora roreri , Two of the Major Pathogens of Cacao

Ricardo Augusto Tiburcio; Gustavo G.L. Costa; Marcelo Falsarella Carazzolle; Jorge Maurício Costa Mondego; Stephen C. Schuster; John E. Carlson; Mark J. Guiltinan; Bryan A. Bailey; Piotr A. Mieczkowski; Lyndel W. Meinhardt; Gonçalo Amarante Guimarães Pereira

Moniliophthora perniciosa and Moniliophthora roreri are phytopathogenic basidiomycete species that infect cacao causing two important diseases in this crop: “Witches’ Broom” and “Frosty Pod Rot”, respectively. The ability of species from this genus (Moniliophthora) to cause disease is exceptional in the family Marasmiaceae. Species in closely related genera including, Marasmius, Crinipellis, and Chaetocalathus, are mainly saprotrophs and are not known to cause disease. In this study, the possibility that this phytopathogenic lifestyle has been acquired by horizontal gene transfer (HGT) was investigated. A stringent genome comparison pipeline was used to identify potential genes that have been obtained by Moniliophthora through HGT. This search led to the identification of three genes: a metallo-dependent hydrolase (MDH), a mannitol phosphate dehydrogenase (MPDH), and a family of necrosis-inducing proteins (NEPs). Phylogenetic analysis of these genes suggests that Moniliophthora acquired NEPs from oomycetes, MDH from actinobacteria and MPDH from firmicutes. Based on the known gene functions and on previous studies of M. perniciosa infection and development, a correlation between gene acquisition and the evolution of the phytopathogenic genus Moniliophthora can be postulated.


AMB Express | 2012

Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system

Cynthia Canêdo da Silva; Helen L. Hayden; Tim Sawbridge; Pauline M. Mele; Ricardo Henrique Kruger; Marili V. N. Rodrigues; Gustavo G.L. Costa; Ramon Vidal; Maíra Paula de Sousa; Ana Paula R. Torres; Vânia M. J. Santiago; Valéria Maia de Oliveira

In petrochemical refinery wastewater treatment plants (WWTP), different concentrations of pollutant compounds are received daily in the influent stream, including significant amounts of phenolic compounds, creating propitious conditions for the development of particular microorganisms that can rapidly adapt to such environment. In the present work, the microbial sludge from a refinery WWTP was enriched for phenol, cloned into fosmid vectors and pyrosequenced. The fosmid libraries yielded 13,200 clones and a comprehensive bioinformatic analysis of the sequence data set revealed a complex and diverse bacterial community in the phenol degrading sludge. The phylogenetic analyses using MEGAN in combination with RDP classifier showed a massive predominance of Proteobacteria, represented mostly by the genera Diaphorobacter, Pseudomonas, Thauera and Comamonas. The functional classification of phenol degrading sludge sequence data set generated by MG-RAST showed the wide metabolic diversity of the microbial sludge, with a high percentage of genes involved in the aerobic and anaerobic degradation of phenol and derivatives. In addition, genes related to the metabolism of many other organic and xenobiotic compounds, such as toluene, biphenyl, naphthalene and benzoate, were found. Results gathered herein demonstrated that the phenol degrading sludge has complex phylogenetic and functional diversities, showing the potential of such community to degrade several pollutant compounds. This microbiota is likely to represent a rich resource of versatile and unknown enzymes which may be exploited for biotechnological processes such as bioremediation.


BMC Genomics | 2009

The protist Trichomonas vaginalis harbors multiple lineages of transcriptionally active Mutator -like elements

Fabrício R. Lopes; Joana C. Silva; Marlene Benchimol; Gustavo G.L. Costa; Gonçalo Amarante Guimarães Pereira; Claudia Marcia Aparecida Carareto

BackgroundFor three decades the Mutator system was thought to be exclusive of plants, until the first homolog representatives were characterized in fungi and in early-diverging amoebas earlier in this decade.ResultsHere, we describe and characterize four families of Mutator-like elements in a new eukaryotic group, the Parabasalids. These TrichomonasvaginalisMutator-likeelements, or TvMULEs, are active in T. vaginalis and patchily distributed among 12 trichomonad species and isolates. Despite their relatively distinctive amino acid composition, the inclusion of the repeats TvMULE1, TvMULE2, TvMULE3 and TvMULE4 into the Mutator superfamily is justified by sequence, structural and phylogenetic analyses. In addition, we identified three new TvMULE-related sequences in the genome sequence of Candida albicans. While TvMULE1 is a member of the MuDR clade, predominantly from plants, the other three TvMULEs, together with the C. albicans elements, represent a new and quite distinct Mutator lineage, which we named TvCaMULEs. The finding of TvMULE1 sequence inserted into other putative repeat suggests the occurrence a novel TE family not yet described.ConclusionThese findings expand the taxonomic distribution and the range of functional motif of MULEs among eukaryotes. The characterization of the dynamics of TvMULEs and other transposons in this organism is of particular interest because it is atypical for an asexual species to have such an extreme level of TE activity; this genetic landscape makes an interesting case study for causes and consequences of such activity. Finally, the extreme repetitiveness of the T. vaginalis genome and the remarkable degree of sequence identity within its repeat families highlights this species as an ideal system to characterize new transposable elements.


Genetics and Molecular Biology | 2012

A web-based bioinformatics interface applied to the GENOSOJA project: databases and pipelines

Leandro Costa do Nascimento; Gustavo G.L. Costa; Eliseu Binneck; Gonçalo Amarante Guimarães Pereira; Marcelo Falsarella Carazzolle

The Genosoja consortium is an initiative to integrate different omics research approaches carried out in Brazil. Basically, the aim of the project is to improve the plant by identifying genes involved in responses against stresses that affect domestic production, like drought stress and Asian Rust fungal disease. To do so, the project generated several types of sequence data using different methodologies, most of them sequenced by next generation sequencers. The initial stage of the project is highly dependent on bioinformatics analysis, providing suitable tools and integrated databases. In this work, we describe the main features of the Genosoja web database, including the pipelines to analyze some kinds of data (ESTs, SuperSAGE, microRNAs, subtractive cDNA libraries), as well as web interfaces to access information about soybean gene annotation and expression.


web science | 2007

Gene expression profiles of erythroid precursors characterise several mechanisms of the action of hydroxycarbamide in sickle cell anaemia

Flávia Chagas Costa; Anderson F. Cunha; André Fattori; Tarcisio S. Peres; Gustavo G.L. Costa; Tiago Ferraz Machado; Dulcineia M. Albuquerque; Sheley Gambero; Carolina Lanaro; S. T. O. Saad; Fernando Ferreira Costa

Hydroxycarbamide (HC) (or hydroxyurea) has been reported to increase fetal haemoglobin levels and improve clinical symptoms in sickle cell anaemia (SCA) patients. However, the complete pathway by which HC acts remains unclear. To study the mechanisms involved in the action of HC, global gene expression profiles were obtained from the bone marrow cells of a SCA patient before and after HC treatment using serial analysis of gene expression. In the comparison of both profiles, 147 differentially expressed transcripts were identified. The functional classification of these transcripts revealed a group of gene categories associated with transcriptional and translational regulation, e.g. EGR‐1, CENTB1, ARHGAP4 and RIN3, suggesting a possible role for these pathways in the improvement of clinical symptoms of SCA patients. The genes involved in these mechanisms may represent potential tools for the identification of new targets for SCA therapy.

Collaboration


Dive into the Gustavo G.L. Costa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lyndel W. Meinhardt

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Piotr A. Mieczkowski

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Anderson F. Cunha

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramon Vidal

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Bryan A. Bailey

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Mark J. Guiltinan

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge