Gustavo Parisi
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gustavo Parisi.
Plant Molecular Biology | 2004
Gustavo Parisi; Mariano Perales; María Silvina Fornasari; Alejandro Colaneri; Nahuel Schain; Diego F. Gómez Casati; Sabrina Zimmermann; Axel Brennicke; Alejandro Araya; James G. Ferry; Julián Echave; Eduardo Zabaleta
Three genes from Arabidopsis thaliana with high sequence similarity to gamma carbonic anhydrase (γCA), a Zn containing enzyme from Methanosarcina thermophila(CAM), were identified and characterized. Evolutionary and structural analyses predict that these genes code for active forms of γCA. Phylogenetic analyses reveal that these Arabidopsis gene products cluster together with CAM and related sequences from α and γ proteobacteria, organisms proposed as the mitochondrial endosymbiont ancestor. Indeed, in vitro and in vivo experiments indicate that these gene products are transported into the mitochondria as occurs with several mitochondrial protein genes transferred, during evolution, from the endosymbiotic bacteria to the host genome. Moreover, putative CAM orthologous genes are detected in other plants and green algae and were predicted to be imported to mitochondria. Structural modeling and sequence analysis performed in more than a hundred homologous sequences show a high conservation of functionally important active site residues. Thus, the three histidine residues involved in Zn coordination (His 81, 117 and 122), Arg 59, Asp 61, Gin 75, and Asp 76 of CAM are conserved and properly arranged in the active site cavity of the models. Two other functionally important residues (Glu 62 and Glu 84 of CAM) are lacking, but alternative amino acids that might serve to their roles are postulated. Accordingly, we propose that photosynthetic eukaryotic organisms (green algae and plants) contain γCAs and that these enzymes codified by nuclear genes are imported into mitochondria to accomplish their biological function.
BMC Genomics | 2008
Claudio Valverde; Jonathan Livny; Jan-Philip Schlüter; Jan Reinkensmeier; Anke Becker; Gustavo Parisi
BackgroundSmall non-coding RNAs (sRNAs) have emerged as ubiquitous regulatory elements in bacteria and other life domains. However, few sRNAs have been identified outside several well-studied species of gamma-proteobacteria and thus relatively little is known about the role of RNA-mediated regulation in most other bacterial genera. Here we have conducted a computational prediction of putative sRNA genes in intergenic regions (IgRs) of the symbiotic α-proteobacterium S. meliloti 1021 and experimentally confirmed the expression of dozens of these candidate loci in the closely related strain S. meliloti 2011.ResultsOur first sRNA candidate compilation was based mainly on the output of the sRNAPredictHT algorithm. A thorough manual sequence analysis of the curated list rendered an initial set of 18 IgRs of interest, from which 14 candidates were detected in strain 2011 by Northern blot and/or microarray analysis. Interestingly, the intracellular transcript levels varied in response to various stress conditions. We developed an alternative computational method to more sensitively predict sRNA-encoding genes and score these predicted genes based on several features to allow identification of the strongest candidates. With this novel strategy, we predicted 60 chromosomal independent transcriptional units that, according to our annotation, represent strong candidates for sRNA-encoding genes, including most of the sRNAs experimentally verified in this work and in two other contemporary studies. Additionally, we predicted numerous candidate sRNA genes encoded in megaplasmids pSymA and pSymB. A significant proportion of the chromosomal- and megaplasmid-borne putative sRNA genes were validated by microarray analysis in strain 2011.ConclusionOur data extend the number of experimentally detected S. meliloti sRNAs and significantly expand the list of putative sRNA-encoding IgRs in this and closely related α-proteobacteria. In addition, we have developed a computational method that proved useful to predict sRNA-encoding genes in S. meliloti. We anticipate that this predictive approach can be flexibly implemented in many other bacterial species.
Journal of Molecular Evolution | 2006
Sandra Maguid; Sebastian Fernandez-Alberti; Gustavo Parisi; Julián Echave
Internal protein dynamics is essential for biological function. During evolution, protein divergence is functionally constrained: properties more relevant for function vary more slowly than less important properties. Thus, if protein dynamics is relevant for function, it should be evolutionary conserved. In contrast with the well-studied evolution of protein structure, the evolutionary divergence of protein dynamics has not been addressed systematically before, apart from a few case studies. X-Ray diffraction analysis gives information not only on protein structure but also on B-factors, which characterize the flexibility that results from protein dynamics. Here we study the evolutionary divergence of protein backbone dynamics by comparing the Cα flexibility (B-factor) profiles for a large dataset of homologous proteins classified into families and superfamilies. We show that Cα flexibility profiles diverge slowly, so that they are conserved at family and superfamily levels, even for pairs of proteins with nonsignificant sequence similarity. We also analyze and discuss the correlations among the divergences of flexibility, sequence, and structure.
Plant Molecular Biology | 2004
Mariano Perales; Gustavo Parisi; María Silvina Fornasari; Alejandro Colaneri; Fernando Villarreal; Nahuel González-Schain; Julián Echave; Diego F. Gomez-Casati; Hans-Peter Braun; Alejandro Araya; Eduardo Zabaleta
We report the identification by two hybrid screens of two novel similar proteins, called Arabidopsis thaliana gamma carbonic anhydrase like1 and 2 (AtγCAL1 and AtγCAL2), that interact specifically with putative Arabidopsis thaliana gamma Carbonic Anhydrase (AtγCA) proteins in plant mitochondria. The interaction region that was located in the N-terminal 150 amino acids of mature AtγCA and AtγCA like proteins represents a new interaction domain. In vitro experiments indicate that these proteins are imported into mitochondria and are associated with mitochondrial complex I as AtγCAs. All plant species analyzed contain both AtγCA and AtγCAL sequences indicating that these genes were conserved throughout plant evolution. Structural modeling of AtγCAL sequences show a deviation of functionally important active site residues with respect to γCAs but could form active interfaces in the interaction with AtγCAs. We postulate a CA complex tightly associated to plant mitochondrial complex.
Biochemistry | 2008
Hugo A. Valdez; Maria V. Busi; Nahuel Z. Wayllace; Gustavo Parisi; Rodolfo A. Ugalde; Diego F. Gomez-Casati
Starch synthase III (SSIII), one of the SS isoforms involved in plant starch synthesis, has been reported to play a regulatory role in the synthesis of transient starch. SSIII from Arabidopsis thaliana contains 1025 amino acid residues and has an N-terminal transit peptide for chloroplast localization which is followed by three repeated starch-binding domains (SBDs; SSIII residues 22-591) and a C-terminal catalytic domain (residues 592-1025) similar to bacterial glycogen synthase. In this work, we constructed recombinant full-length and truncated isoforms of SSIII, lacking one, two, or three SBDs, and recombinant proteins, containing three, two, or one SBD, to investigate the role of these domains in enzyme activity. Results revealed that SSIII uses preferentially ADPGlc, although UDPGlc can also be used as a sugar donor substrate. When ADPGlc was used, the presence of the SBDs confers particular properties to each isoform, increasing the apparent affinity and the V max for the oligosaccharide acceptor substrate. However, no substantial changes in the kinetic parameters for glycogen were observed when UDPGlc was the donor substrate. Under glycogen saturating conditions, the presence of SBDs increases progressively the apparent affinity and V max for ADPGlc but not for UDPGlc. Adsorption assays showed that the N-terminal region of SSIII, containing three, two, or one SBD module have increased capacity to bind starch depending on the number of SBD modules, with the D23 protein (containing the second and third SBD module) being the one that makes the greatest contribution to binding. The results presented here suggest that the N-terminal SBDs have a regulatory role, showing a starch binding capacity and modulating the catalytic properties of SSIII.
Proteins | 2007
Maria V. Busi; Nicolas Palopoli; Hugo A. Valdez; María Silvina Fornasari; Nahuel Z. Wayllace; Diego F. Gomez-Casati; Gustavo Parisi; Rodolfo A. Ugalde
Glycogen and starch are the major energy storage compounds in most living organisms. The metabolic pathways leading to their synthesis involve the action of several enzymes, among which glycogen synthase (GS) or starch synthase (SS) catalyze the elongation of the α‐1,4‐glucan backbone. At least five SS isoforms were described in Arabidopsis thaliana; it has been reported that the isoform III (SSIII) has a regulatory function on the synthesis of transient plant starch. The catalytic C‐terminal domain of A. thaliana SSIII (SSIII‐CD) was cloned and expressed. SSIII‐CD fully complements the production of glycogen by an Agrobacterium tumefaciens glycogen synthase null mutant, suggesting that this truncated isoform restores in vivo the novo synthesis of bacterial glycogen. In vitro studies revealed that recombinant SSIII‐CD uses with more efficiency rabbit muscle glycogen than amylopectin as primer and display a high apparent affinity for ADP‐Glc. Fold class assignment methods followed by homology modeling predict a high global similarity to A. tumefaciens GS showing a fully conservation of the ADP‐binding residues. On the other hand, this comparison revealed important divergences of the polysaccharide binding domain between AtGS and SSIII‐CD. Proteins 2008.
Proteins | 2006
Nicolas Palopoli; Maria V. Busi; María Silvina Fornasari; Diego F. Gomez-Casati; Rodolfo A. Ugalde; Gustavo Parisi
The starch‐synthase III (SSIII), with a total of 1025 residues, is one of the enzymes involved in plants starch synthesis. SSIII from Arabidopsis thaliana contains a putative N‐terminal transit peptide followed by a 557‐amino acid SSIII‐specific domain (SSIII‐SD) with three internal repeats and a C‐terminal catalytic domain of 450 amino acids. Here, using computational characterization techniques, we show that each of the three internal repeats encodes a starch‐binding domain (SBD). Although the SSIII from A. thaliana and its close homologous proteins show no detectable sequence similarity with characterized SBD sequences, the amino acid residues known to be involved in starch binding are well conserved. Proteins 2006.
Bioinformatics | 2013
Alexander Miguel Monzon; Ezequiel Juritz; María Silvina Fornasari; Gustavo Parisi
MOTIVATION Conformational diversity is a key concept in the understanding of different issues related with protein function such as the study of catalytic processes in enzymes, protein-protein recognition, protein evolution and the origins of new biological functions. Here, we present a database of proteins with different degrees of conformational diversity. Conformational Diversity of Native State (CoDNaS) is a redundant collection of three-dimensional structures for the same protein derived from protein data bank. Structures for the same protein obtained under different crystallographic conditions have been associated with snapshots of protein dynamism and consequently could characterize protein conformers. CoDNaS allows the user to explore global and local structural differences among conformers as a function of different parameters such as presence of ligand, post-translational modifications, changes in oligomeric states and differences in pH and temperature. Additionally, CoDNaS contains information about protein taxonomy and function, disorder level and structural classification offering useful information to explore the underlying mechanism of conformational diversity and its close relationship with protein function. Currently, CoDNaS has 122 122 structures integrating 12 684 entries, with an average of 9.63 conformers per protein. AVAILABILITY The database is freely available at http://www.codnas.com.ar/.
Molecular Biology and Evolution | 2013
Ezequiel Juritz; Nicolas Palopoli; María Silvina Fornasari; Sebastian Fernandez-Alberti; Gustavo Parisi
It is well established that the conservation of protein structure during evolution constrains sequence divergence. The conservation of certain physicochemical environments to preserve protein folds and then the biological function originates a site-specific structurally constrained substitution pattern. However, protein native structure is not unique. It is known that the native state is better described by an ensemble of conformers in a dynamic equilibrium. In this work, we studied the influence of conformational diversity in sequence divergence and protein evolution. For this purpose, we derived a set of 900 proteins with different degrees of conformational diversity from the PCDB database, a conformer database. With the aid of a structurally constrained protein evolutionary model, we explored the influence of the different conformations on sequence divergence. We found that the presence of conformational diversity strongly modulates the substitution pattern. Although the conformers share several of the structurally constrained sites, 30% of them are conformer specific. Also, we found that in 76% of the proteins studied, a single conformer outperforms the others in the prediction of sequence divergence. It is interesting to note that this conformer is usually the one that binds ligands participating in the biological function of the protein. The existence of a conformer-specific site-substitution pattern indicates that conformational diversity could play a central role in modulating protein evolution. Furthermore, our findings suggest that new evolutionary models and bioinformatics tools should be developed taking into account this substitution bias.
Nucleic Acids Research | 2011
Ezequiel Juritz; Sebastian Fernandez Alberti; Gustavo Parisi
PCDB (http://www.pcdb.unq.edu.ar) is a database of protein conformational diversity. For each protein, the database contains the redundant compilation of all the corresponding crystallographic structures obtained under different conditions. These structures could be considered as different instances of protein dynamism. As a measure of the conformational diversity we use the maximum RMSD obtained comparing the structures deposited for each domain. The redundant structures were extracted following CATH structural classification and cross linked with additional information. In this way it is possible to relate a given amount of conformational diversity with different levels of information, such as protein function, presence of ligands and mutations, structural classification, active site information and organism taxonomy among others. Currently the database contains 7989 domains with a total of 36581 structures from 4171 different proteins. The maximum RMSD registered is 26.7 Å and the average of different structures per domain is 4.5.