Gustavo Petri Guerra
Universidade Federal de Santa Maria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gustavo Petri Guerra.
Journal of Pharmacology and Experimental Therapeutics | 2012
Gabriela Trevisan; Mateus Rossato; Cristiani Isabel Banderó Walker; Jonatas Zeni Klafke; Fernanda A. Rosa; Sara Marchesan Oliveira; Raquel Tonello; Gustavo Petri Guerra; Aline Augusti Boligon; Ricardo Basso Zanon; Margareth Linde Athayde; Juliano Ferreira
The transient receptor potential vanilloid 1 (TRPV1) receptor is relevant to the perception of noxious information and has been studied as a therapeutic target for the development of new analgesics. The goal of this study was to perform in vivo and in vitro screens to identify novel, efficacious, and safe TRPV1 antagonists isolated from leaves of the medicinal plant Vernonia tweedieana Baker. All of the fractions and the hydroalcoholic extract produced antinociception in mice during the capsaicin test, but the dichloromethane fraction also had antioedematogenic effect. Among the compounds isolated from the dichloromethane fraction, only α-spinasterol reduced the nociception and edema induced by capsaicin injection. Moreover, α-spinasterol demonstrated good oral absorption and high penetration into the brain and spinal cord of mice. α-Spinasterol was able to displace [3H]resiniferatoxin binding and diminish calcium influx mediated by capsaicin. Oral administration of the dichloromethane fraction and α-spinasterol also produced antinociceptive effect in the noxious heat-induced nociception test; however, they did not change the mechanical threshold of naive mice. The treatment with α-spinasterol did not produce antinociceptive effect in mice systemically pretreated with resiniferatoxin. In addition, α-spinasterol and the dichloromethane fraction reduced the edema, mechanical, and heat hyperalgesia elicited by complete Freunds adjuvant paw injection. The dichloromethane fraction and α-spinasterol did not affect body temperature or locomotor activity. In conclusion, α-spinasterol is a novel efficacious and safe antagonist of the TRPV1 receptor with antinociceptive effect.
Free Radical Biology and Medicine | 2014
Gabriela Trevisan; Carin Hoffmeister; Mateus Rossato; Sara Marchesan Oliveira; Mariane Arnoldi Silva; Cássia Regina Silva; Raquel Tonello; Daiana Minocci; Gustavo Petri Guerra; Serena Materazzi; Romina Nassini; Pierangelo Geppetti; Juliano Ferreira
Acute gout attacks produce severe joint pain and inflammation associated with monosodium urate (MSU) crystals leading to oxidative stress production. The transient potential receptor ankyrin 1 (TRPA1) is expressed by a subpopulation of peptidergic nociceptors and, via its activation by endogenous reactive oxygen species, including hydrogen peroxide (H2O2), contributes to pain and neurogenic inflammation. The aim of this study was to investigate the role of TRPA1 in hyperalgesia and inflammation in a model of acute gout attack in rodents. Inflammatory parameters and mechanical hyperalgesia were measured in male Wistar rats and in wild-type (Trpa1(+/+)) or TRPA1-deficient (Trpa1(-/-)) male mice. Animals received intra-articular (ia, ankle) injection of MSU. The role of TRPA1 was assessed by receptor antagonism, gene deletion or expression, sensory fiber defunctionalization, and calcitonin gene-related peptide (CGRP) release. We found that nociceptor defunctionalization, TRPA1 antagonist treatment (via ia or oral administration), and Trpa1 gene ablation abated hyperalgesia and inflammatory responses (edema, H2O2 generation, interleukin-1β release, and neutrophil infiltration) induced by ia MSU injection. In addition, we showed that MSU evoked generation of H2O2 in synovial tissue, which stimulated TRPA1 producing CGRP release and plasma protein extravasation. The MSU-elicited responses were also reduced by the H2O2-detoxifying enzyme catalase and the reducing agent dithiothreitol. TRPA1 activation by MSU challenge-generated H2O2 mediates the entire inflammatory response in an acute gout attack rodent model, thus strengthening the role of the TRPA1 receptor and H2O2 production as potential targets for treatment of acute gout attacks.
Arthritis & Rheumatism | 2013
Gabriela Trevisan; Carin Hoffmeister; Mateus Rossato; Sara Marchesan Oliveira; Mariane Arnoldi Silva; Rafael Porto Ineu; Gustavo Petri Guerra; Serena Materazzi; Romina Nassini; Pierangelo Geppetti; Juliano Ferreira
OBJECTIVE Gout is a common cause of inflammatory arthritis and is provoked by the accumulation of monosodium urate (MSU) crystals. However, the underlying mechanisms of the pain associated with acute attacks of gout are poorly understood. The aim of this study was to evaluate the role of transient receptor potential ankyrin 1 (TRPA-1) and TRPA-1 stimulants, such as H2 O2 , in a rodent model of MSU-induced inflammation. METHODS MSU or H2 O2 was injected into the hind paws of rodents or applied in cultured sensory neurons, and the intracellular calcium response was measured in vitro. Inflammatory or nociceptive responses in vivo were evaluated using pharmacologic, genetic, or biochemical tools and methods. RESULTS TRPA-1 antagonism, TRPA-1 gene deletion, or pretreatment of peptidergic TRP-expressing primary sensory neurons with capsaicin markedly decreased MSU-induced nociception and edema. In addition to these neurogenic effects, MSU increased H2 O2 levels in the injected tissue, an effect that was abolished by the H2 O2 -detoxifying enzyme catalase. H2 O2 , but not MSU, directly stimulated sensory neurons through the activation of TRPA-1. The nociceptive responses evoked by MSU or H2 O2 injection were attenuated by the reducing agent dithiothreitol. In addition, MSU injection increased the expression of TRPA-1 and TRP vanilloid channel 1 (TRPV-1) and also enhanced cellular infiltration and interleukin-1β levels, and these effects were blocked by TRPA-1 antagonism. CONCLUSION Our results suggest that MSU injection increases tissue H2 O2 , thereby stimulating TRPA-1 on sensory nerve endings to produce inflammation and nociception. TRPV-1, by a previously unknown mechanism, also contributes to these responses.
Life Sciences | 2011
Cássia Regina Silva; Sara Marchesan Oliveira; Mateus Rossato; Gerusa Duarte Dalmolin; Gustavo Petri Guerra; Arthur da Silveira Prudente; Daniela Almeida Cabrini; Michel Fleith Otuki; Eunice André; Juliano Ferreira
AIMS In the present work, we characterize the inflammatory process induced by the topical application of cinnamaldehyde on the skin of mice and verify the participation of transient receptor potential A1 TRPA1 receptors in this process. MAIN METHODS We measured mouse ear edema and sensitization/desensitization after topical application of cinnamaldehyde or/and capsaicin. We also quantified cellular infiltration through myeloperoxidase (MPO) activity and histological and immunohistochemical analyses and evaluated the expression of TRPV1 and TRPA1 by western blot. KEY FINDINGS Cinnamaldehyde induced ear edema in mice (1-6μg/ear) with a maximum effect of 4μg/ear. Cinnamaldehyde promoted leukocyte infiltration as detected by increasing MPO activity and confirmed by histological analyses. The edema and cellular infiltration evoked by the application of 4μg/ear of cinnamaldehyde were prevented by topical application of ruthenium red, a non-selective TRP antagonist as well as camphor and HC030031, two TRPA1 receptor antagonists. Cinnamaldehyde-induced edema, but not cellular infiltration, was prevented by topical application of the tachykinin NK1 antagonist, aprepitant, indicating a neuropeptide release phenomenon in this process. Additionally, we observed that repeated topical applications of cinnamaldehyde did not induce changes in sensitization or desensitization with respect to the edema response. Interestingly, repeated treatment with the TRPV1 agonist, capsaicin, abrogated it edematogenic response, confirming the desensitization process and partially decreasing the cinnamaldehyde-induced edema, suggesting the involvement of capsaicin-sensitive fibers. SIGNIFICANCE Our data demonstrate that the topical application of cinnamaldehyde produces an inflammatory response that is dependent on TRPA1 receptor stimulation.
Epilepsia | 2011
Vinícius Rafael Funck; Clarissa Vasconcelos de Oliveira; Letícia Meier Pereira; Leonardo Magno Rambo; Leandro Rodrigo Ribeiro; Luiz Fernando Freire Royes; Juliano Ferreira; Gustavo Petri Guerra; Ana Flávia Furian; Maurício Schneider Oliveira; Carlos Augusto Mallmann; Carlos Fernando Mello; Mauro Schneider Oliveira
Purpose: Statins are selective inhibitors of 3‐hydroxyl‐3‐methyl‐glutaryl coenzyme A (HMG‐CoA) reductase, the rate‐limiting enzyme of the mevalonate pathway for cholesterol biosynthesis. Increasing evidence indicates that statins, particularly atorvastatin, are neuroprotective in several conditions, including stroke, cerebral ischemia, traumatic brain injury, and excitotoxic amino acid exposure. However, only a few studies have investigated whether statins modulate seizure activity. In the current study we investigated whether atorvastatin or simvastatin alters the seizures induced by pentylenetetrazol (PTZ), a classical convulsant.
Neuroscience | 2012
Jonatas Zeni Klafke; M.A. da Silva; Gabriela Trevisan; Mateus Rossato; C.R. da Silva; Gustavo Petri Guerra; Jardel Gomes Villarinho; Flávia Karine Rigo; Gerusa D. Dalmolin; Marcus V. Gomez; Maribel Antonello Rubin; Juliano Ferreira
The transient receptor potential ankyrin 1 (TRPA1) is expressed in peripheral and spinal terminals of sensory neurons, jointly to the vanilloid receptor (TRPV1). A relevant peripheral role of TRPA1 receptor has been implicated in a variety of processes, including the detection of noxious cold, and diverse painful stimulus, but the functional role of TRPA1 receptor in nociceptive transmission at spinal cord in vivo is poorly known. Therefore, the aim of this study was to evaluate whether the glutamatergic system is involved in the transmission of nociceptive stimulus induced for a TRPA1 agonist in the rat spinal cord. We observed that cinnamaldehyde, a TRPA1 agonist, on spinal cord synaptosomes leads to an increase in [Ca(2+)](i) and a rapid release of glutamate, but was not able to change the specific [(3)H]-glutamate binding. In addition, spinally administered cinnamaldehyde produced heat hyperalgesia and mechanical allodynia in rats. This behavior was reduced by the co-injection (i.t.) of camphor (TRPA1 antagonist) or MK-801 (N-methyl-D-aspartate (NMDA) receptor antagonist) to cinnamaldehyde. Besides, the pretreatment with resiniferatoxin (RTX), a potent TRPV1 agonist, abolished the cinnamaldehyde-induced heat hyperalgesia. Here, we showed that intrathecal RTX results in a decrease in TRPA1 and TRPV1 immunoreactivity in dorsal root ganglion. Collectively, our results demonstrate the pertinent participation of spinal TRPA1 in the possible enhancement of glutamatergic transmission of nociceptive signals leading to increase of the hypersensitivity, here observed as heat hyperalgesia. Then the modulation of spinal TRPA1 might be a valuable target in painful conditions associated with central pain hypersensitivity.
Neurobiology of Learning and Memory | 2011
Gustavo Petri Guerra; Carlos Fernando Mello; Guilherme Vargas Bochi; Andréia Martini Pazini; Roselei Fachinetto; Rafael C. Dutra; João B. Calixto; Juliano Ferreira; Maribel Antonello Rubin
Spermidine (SPD) is an endogenous polyamine that modulates N-methyl-D-aspartate (NMDA) receptor function, and has been reported to facilitate memory formation. In the current study we determined whether or not the PKA/CREB signaling pathway is involved in SPD-induced facilitation of memory of inhibitory avoidance task in adult rats. The post-training administration of the cAMP-dependent protein kinase (PKA) inhibitor, N-[2-bromocinnamylamino)ethyl]-5-isoquinoline sulfonamide [H-89, 0.5 ρmol intrahippocampal (ih)] or the antagonist of the NMDA receptor polyamine-binding site (arcaine, 0.02 nmol ih) with SPD (0.2 nmol ih) prevented memory improvement induced by SPD. Intrahippocampal administration of SPD (0.2 nmol) facilitated PKA and cAMP response element-binding protein (CREB) phosphorylation in the hippocampus 180 min, but not 30 min, after administration, and increased translocation of the catalytic subunit of PKA into the nucleus. Arcaine (0.02 nmol) and H-89 (0.5 ρmol) prevented the stimulatory effect of SPD on PKA and CREB phosphorylation. These results suggest that memory enhancement induced by the ih administration of SPD involves the PKA/CREB pathways in rats.
Journal of Neurochemistry | 2012
Gustavo Petri Guerra; Carlos Fernando Mello; Guilherme Vargas Bochi; Andréia Martini Pazini; Michelle Melgarejo da Rosa; Juliano Ferreira; Maribel Antonello Rubin
J. Neurochem. (2012) 122, 363–373.
Pharmacological Research | 2016
Gustavo Petri Guerra; Maribel Antonello Rubin; Carlos Fernando Mello
Spermine and spermidine are natural polyamines that are produced mainly via decarboxylation of l-ornithine and the sequential transfer of aminopropyl groups from S-adenosylmethionine to putrescine by spermidine synthase and spermine synthase. Spermine and spermidine interact with intracellular and extracellular acidic residues of different nature, including nucleic acids, phospholipids, acidic proteins, carboxyl- and sulfate-containing polysaccharides. Therefore, multiple actions have been suggested for these polycations, including modulation of the activity of ionic channels, protein synthesis, protein kinases, and cell proliferation/death, within others. In this review we summarize these neurochemical/neurophysiological/morphological findings, particularly those that have been implicated in the improving and deleterious effects of spermine and spermidine on learning and memory of naïve animals in shock-motivated and nonshock-motivated tasks, from a historical perspective. The interaction with the opioid system, the facilitation and disruption of morphine-induced reward and the effect of polyamines and putative polyamine antagonists on animal models of cognitive diseases, such as Alzheimers, Huntington, acute neuroinflammation and brain trauma are also reviewed and discussed. The increased production of polyamines in Alzheimers disease and the biphasic nature of the effects of polyamines on memory and on the NMDA receptor are also considered. In light of the current literature on polyamines, which include the description of an inborn error of the metabolism characterized by mild-to moderate mental retardation and polyamine metabolism alterations in suicide completers, we can anticipate that polyamine targets may be important for the development of novel strategies and approaches for understanding the etiopathogenesis of important central disorders and their pharmacological treatment.
Annals of the Rheumatic Diseases | 2016
Cássia Regina Silva; Sara Marchesan Oliveira; Carin Hoffmeister; Vinícius Rafael Funck; Gustavo Petri Guerra; Gabriela Trevisan; Raquel Tonello; Mateus Rossato; João Bosco Pesquero; Michael Bader; Mauro Schneider Oliveira; Jason J. McDougall; Juliano Ferreira
Objective Verify the role of the kinin B1 receptors (B1R) and the effect of ACE inhibitors (ACEi) on acute gout induced by monosodium urate (MSU) crystals in rodents. Methods Painful (overt pain and allodynia) and inflammatory parameters (joint oedema, leukocyte trafficking, interleukin-1β levels) of acute gout attacks were assessed several hours after an intra-articular injection of MSU (1.25 or 0.5 mg/articulation) into the ankle of rats or mice, respectively. The role of B1R was investigated using pharmacological antagonism or gene deletion. Additionally, B1R immunoreactivity in ankle tissue and sensory neurons, kininase I activity and des-Arg9-bradykinin synovial levels were also measured. Similar tools were used to investigate the effects of ACEi on a low dose of MSU (0.0125 mg/articulation)-induced inflammation. Results Kinin B1R antagonism or gene deletion largely reduced all painful and inflammatory signs of gout. Furthermore, MSU increased B1R expression in articular tissues, the content of the B1 agonist des-Arg9-bradykinin and the activity of the B1 agonist-forming enzyme kininase I. A low dose of MSU crystals, which did not induce inflammation in control animals, caused signs of acute gout attacks in ACEi-treated animals that were B1R-dependent. Conclusions Kinin B1R contributes to acute gouty attacks, including the ones facilitated by ACEi. Therefore, B1R is a potential therapeutic target for the treatment and prophylaxis of gout, especially in patients taking ACEi.