Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guus van Dalum is active.

Publication


Featured researches published by Guus van Dalum.


PLOS ONE | 2013

Filter Characteristics Influencing Circulating Tumor Cell Enrichment from Whole Blood

F.A.W. Coumans; Guus van Dalum; Markus Beck; Leonardus Wendelinus Mathias Marie Terstappen

A variety of filters assays have been described to enrich circulating tumor cells (CTC) based on differences in physical characteristics of blood cells and CTC. In this study we evaluate different filter types to derive the properties of the ideal filter for CTC enrichment. Between 0.1 and 10 mL of whole blood spiked with cells from tumor cell lines were passed through silicon nitride microsieves, polymer track-etched filters and metal TEM grids with various pore sizes. The recovery and size of 9 different culture cell lines was determined and compared to the size of EpCAM+CK+CD45−DNA+ CTC from patients with metastatic breast, colorectal and prostate cancer. The 8 µm track-etched filter and the 5 µm microsieve had the best performance on MDA-231, PC3-9 and SKBR-3 cells, enriching >80% of cells from whole blood. TEM grids had poor recovery of ∼25%. Median diameter of cell lines ranged from 10.9–19.0 µm, compared to 13.1, 10.7, and 11.0 µm for breast, prostate and colorectal CTC, respectively. The 11.4 µm COLO-320 cell line had the lowest recovery of 17%. The ideal filter for CTC enrichment is constructed of a stiff, flat material, is inert to blood cells, has at least 100,000 regularly spaced 5 µm pores for 1 ml of blood with a ≤10% porosity. While cell size is an important factor in determining recovery, other factors must be involved as well. To evaluate a filtration procedure, cell lines with a median size of 11–13 µm should be used to challenge the system.


Scientific Reports | 2015

The detection of EpCAM + and EpCAM - circulating tumor cells

Sanne de Wit; Guus van Dalum; Aufried Lenferink; Arjan G.J. Tibbe; T. Jeroen N. Hiltermann; Harry J.M. Groen; Cees J.M. van Rijn; Leon W.M.M. Terstappen

EpCAM expressing circulating tumor cells, detected by CellSearch, are predictive of short survival in several cancers and may serve as a liquid biopsy to guide therapy. Here we investigate the presence of EpCAM+ CTC detected by CellSearch and EpCAM– CTC discarded by CellSearch, after EpCAM based enrichment. EpCAM– CTC were identified by filtration and fluorescent labelling. This approach was validated using different cell lines spiked into blood and evaluated on blood samples of 27 metastatic lung cancer patients. The majority of spiked EpCAM+ cells could be detected with CellSearch, whereas most spiked cells with EpCAMlow or EpCAM– expression were detected using filtration. Five or more CTC were detected in 15% of the patient samples, this increased to 41% when adding the CTC detected in the discarded blood. The number of patients with CTC and the number of CTC detected were doubled by the presence of EpCAM– CTC. In this pilot study, the presence of EpCAM+ CTC was associated with poor outcome, whereas the EpCAM– CTC were not. This observation will need to be confirmed in larger studies and molecular characterization needs to be conducted to elucidate differences between EpCAM– and EpCAM+ CTC.


PLOS ONE | 2013

Filtration parameters influencing circulating tumor cell enrichment from whole blood.

F.A.W. Coumans; Guus van Dalum; Markus Beck; Leonardus Wendelinus Mathias Marie Terstappen

Filtration can achieve circulating tumor cell (CTC) enrichment from blood. Key parameters such as flow-rate, applied pressure, and fixation, vary largely between assays and their influence is not well understood. Here, we used a filtration system, to monitor these parameters and determine their relationships. Whole blood, or its components, with and without spiked tumor cells were filtered through track-etched filters. We characterize cells passing through filter pores by their apparent viscosity; the viscosity of a fluid that would pass with the same flow. We measured a ratio of 5·104∶102∶1 for the apparent viscosities of 15 µm diameter MDA-231 cells, 10 µm white cells and 90 fl red cells passing through a 5 µm pore. Fixation increases the pressure needed to pass cells through 8 µm pores 25-fold and halves the recovery of spiked tumor cells. Filtration should be performed on unfixed samples at a pressure of ∼10 mbar for a 1 cm2 track-etched filter with 5 µm pores. At this pressure MDA-231 cells move through the filter in 1 hour. If fixation is needed for sample preservation, a gentle fixative should be selected. The difference in apparent viscosity between CTC and blood cells is key in optimizing recovery of CTC.


Molecular Oncology | 2016

Challenges in circulating tumor cell detection by the CellSearch system.

Kiki C. Andree; Guus van Dalum; Leon W.M.M. Terstappen

Enumeration and characterization of circulating tumor cells (CTC) hold the promise of a real time liquid biopsy. They are however present in a large background of hematopoietic cells making their isolation technically challenging. In 2004, the CellSearch system was introduced as the first and only FDA cleared method designed for the enumeration of circulating tumor cells in 7.5 mL of blood. Presence of CTC detected by CellSearch is associated with poor prognosis in metastatic carcinomas. CTC remaining in patients after the first cycles of therapy indicates a futile therapy. Here we review challenges faced during the development of the CellSearch system and the difficulties in assigning objects as CTC. The large heterogeneity of CTC and the different approaches introduced in recent years to isolate, enumerate and characterize CTC results in a large variation of the number of CTC reported urging the need for uniform definitions and at least a clear definition of what the criteria are for assigning an object as a CTC.


International Journal of Oncology | 2015

Importance of circulating tumor cells in newly diagnosed colorectal cancer

Guus van Dalum; Gerrit-Jan Stam; Loes F.A. Scholten; Walter J.B. Mastboom; I. Vermes; Arjan G.J. Tibbe; Marco R. De Groot; Leonardus Wendelinus Mathias Marie Terstappen

Presence of circulating tumor cells (CTC) is associated with poor prognosis in patients with metastatic colorectal cancer (CRC). The present study was conducted to determine if the presence of CTC prior to surgery and during follow‑up in patients with newly diagnosed non-metastatic CRC can identify patients at risk for disease recurrence. In a prospective single center study 183 patients with newly diagnosed non-disseminated CRC, scheduled for surgery, were enrolled and followed-up for a median of 5.1 years. CTC were enumerated with the CellSearch system in 4 aliquots of 7.5 ml of blood before surgery and at several time-points during follow-up after surgery. The results showed that ≥1 CTC/30 ml of blood were detected in 44 (24%) patients before surgery. Patients with CTC before surgery had a significant decrease in recurrence-free survival (RFS, log-rank test p=0.014) and colon cancer related survival (CCRS, p=0.002). The 5-year RFS dropped from 75 to 61% and the 5-year CCRS from 83 to 69% for patients with CTC before surgery. The presence of CTC and positive lymph nodes remained significant factors in multivariate analysis for recurrence-free survival (RFS). Surprisingly, the presence of CTC weeks after surgery was not significantly associated with RFS and CCRD whereas CTC 2-3 years after surgery was again significantly associated with RFS and CCRD. The presence of CTC in patients with stage I-III CRC before surgery is associated with a significant reduction in RFS and CCRS. These findings suggest a role of CTC detection to assess which patients need adjuvant treatment.


Scientifica | 2014

Detection of circulating tumor cells.

Sanne Mutter-de Wit; Guus van Dalum; Leonardus Wendelinus Mathias Marie Terstappen

The increasing number of treatment options for patients with metastatic carcinomas has created an accompanying need for methods to determine if the tumor will be responsive to the intended therapy and to monitor its effectiveness. Ideally, these methods would be noninvasive and provide quantitative real-time analysis of tumor activity in a variety of carcinomas. Assessment of circulating tumor cells shed into the blood during metastasis may satisfy this need. Here we review the CellSearch technology used for the detection of circulating tumor cells and discuss potential future directions for improvements.


International Journal of Oncology | 2015

Circulating tumor cells before and during follow-up after breast cancer surgery

Guus van Dalum; Gert Jan Stam; Arjan G.J. Tibbe; Bas Franken; Walter J.B. Mastboom; I. Vermes; Marco R. De Groot; Leonardus Wendelinus Mathias Marie Terstappen

The presence of circulating tumor cells (CTC) is an independent prognostic factor for progression-free and overall survival for patients with metastatic and newly diagnosed breast cancer. The present study was undertaken to explore whether the presence of CTC before and during follow-up after surgery is associated with recurrence free survival (RFS) and overall survival (OS). In a prospective single center study, CTC were enumerated with the CellSearch system in 30 ml of peripheral blood of 403 stage I-III patients before undergoing surgery for breast cancer (A) and if available 1 week after surgery (B), after adjuvant chemo- and/or radiotherapy or before start of long-term hormonal therapy (C), one (D), two (E) and three (F) years after surgery. Patients were stratified into unfavorable (CTC≥1) and favorable (CTC=0) prognostic groups. >1 CTC in 30 ml blood was detected in 75/403 (19%) at A, 66/367 (18%) at B, 40/263 (15%) at C, 30/235 (12%) at D, 18/144 (11%) at E and 11/83 (13%) at F. RFS and OS was significantly lower for unfavorable CTC as compared to favorable CTC before surgery (p=0.022 and p=0.006), after adjuvant therapy (p<0.001 and p=0.018) and one (p=0.006 and p=0.013) and two (p<0.001 and p=0.045) years after surgery, but not 1 week post-surgery. The presence of CTC in blood drawn pre and one and two years after surgery, but not post-surgery is associated with shorter RFS and OS for stage I-III breast cancer.


Siam Journal on Imaging Sciences | 2017

Multiscale Segmentation via Bregman Distances and Nonlinear Spectral Analysis

Leonie L. Zeune; Guus van Dalum; Leonardus Wendelinus Mathias Marie Terstappen; Stephanus A. van Gils; Christoph Brune

In biomedical imaging reliable segmentation of objects (e.g. from small cells up to large organs) is of fundamental importance for automated medical diagnosis. New approaches for multi-scale segmentation can considerably improve performance in case of natural variations in intensity, size and shape. This paper aims at segmenting objects of interest based on shape contours and automatically finding multiple objects with different scales. The overall strategy of this work is to combine nonlinear segmentation with scales spaces and spectral decompositions recently introduced in literature. For this we generalize a variational segmentation model based on total variation using Bregman distances to construct an inverse scale space. This offers the new model to be accomplished by a scale analysis approach based on a spectral decomposition of the total variation. As a result we obtain a very efficient, (nearly) parameter-free multiscale segmentation method that comes with an adaptive regularization parameter choice. The added benefit of our method is demonstrated by systematic synthetic tests and its usage in a new biomedical toolbox for identifying and classifying circulating tumor cells. Due to the nature of nonlinear diffusion underlying, the mathematical concepts in this work offer promising extensions to nonlocal classification problems.


Oncotarget | 2018

Circulating tumor cells, tumor-derived extracellular vesicles and plasma cytokeratins in castration-resistant prostate cancer patients

Afroditi Nanou; F.A.W. Coumans; Guus van Dalum; Leonie L. Zeune; David Dolling; Wendy Onstenk; Mateus Crespo; Mariane Sousa Fontes; Pasquale Rescigno; Gemma Fowler; Penny Flohr; Christoph Brune; Stefan Sleijfer; Johann S. de Bono; Leon W.M.M. Terstappen

Purpose The presence of Circulating Tumor Cells (CTCs) in Castration-Resistant Prostate Cancer (CRPC) patients is associated with poor prognosis. In this study, we evaluated the association of clinical outcome in 129 CRPC patients with CTCs, tumor-derived Extracellular Vesicles (tdEVs) and plasma levels of total (CK18) and caspase-cleaved cytokeratin 18 (ccCK18). Experimental Design CTCs and tdEVs were isolated with the CellSearch system and automatically enumerated. Cut-off values dichotomizing patients into favorable and unfavorable groups of overall survival were set on a retrospective data set of 84 patients and validated on a prospective data set of 45 patients. Plasma levels of CK18 and ccCK18 were assessed by ELISAs. Results CTCs, tdEVs and both cytokeratin plasma levels were significantly increased in CRPC patients compared to healthy donors (HDs). All biomarkers except for ccCK18 were prognostic showing a decreased median overall survival for the unfavorable groups of 9.2 vs 21.1, 8.1 vs 23.0 and 10.0 vs 21.5 months respectively. In multivariable Cox regression analysis, tdEVs remained significant. Conclusions Automated CTC and tdEV enumeration allows fast and reliable scoring eliminating inter- and intra- operator variability. tdEVs provide similar prognostic information to CTC counts.


PLOS ONE | 2017

Quantifying HER-2 expression on Circulating Tumor Cells by ACCEPT

Leonie L. Zeune; Guus van Dalum; Charles Decraene; Charlotte Proudhon; Tanja Fehm; Hans Neubauer; Brigitte Rack; Marianna Alunni-Fabbroni; Leon W.M.M. Terstappen; Stephan A. van Gils; Christoph Brune

Circulating tumor cells (CTCs) isolated from blood can be probed for the expression of treatment targets. Immunofluorescence is often used for both the enumeration of CTC and the determination of protein expression levels related to treatment targets. Accurate and reproducible assessment of such treatment target expression levels is essential for their use in the clinic. To enable this, an open source image analysis program named ACCEPT was developed in the EU-FP7 CTCTrap and CANCER-ID programs. Here its application is shown on a retrospective cohort of 132 metastatic breast cancer patients from which blood samples were processed by CellSearch® and stained for HER-2 expression as additional marker. Images were digitally stored and reviewers identified a total of 4084 CTCs. CTC’s HER-2 expression was determined in the thumbnail images by ACCEPT. 150 of these images were selected and sent to six independent investigators to score the HER-2 expression with and without ACCEPT. Concordance rate of the operators’ scoring results for HER-2 on CTCs was 30% and could be increased using the ACCEPT tool to 51%. Automated assessment of HER-2 expression by ACCEPT on 4084 CTCs of 132 patients showed 8 (6.1%) patients with all CTCs expressing HER-2, 14 (10.6%) patients with no CTC expressing HER-2 and 110 (83.3%) patients with CTCs showing a varying HER-2 expression level. In total 1576 CTCs were determined HER-2 positive. We conclude that the use of image analysis enables a more reproducible quantification of treatment targets on CTCs and leads the way to fully automated and reproducible approaches.

Collaboration


Dive into the Guus van Dalum's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harry J.M. Groen

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cees J.M. van Rijn

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge