Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guusje Bonnema is active.

Publication


Featured researches published by Guusje Bonnema.


The Plant Cell | 1996

A high-affinity binding site for the AVR9 peptide elicitor of Cladosporium fulvum is present on plasma membranes of tomato and other solanaceous plants.

M. Kooman-Gersmann; G. Honée; Guusje Bonnema; Pierre J. G. M. de Wit

The race-specific Cladosporium fulvum peptide elicitor AVR9, which specifically induces a hypersensitive response in tomato genotypes carrying the Cf-9 resistance gene, was labeled with iodine-125 at the N-terminal tyrosine residue and used in binding studies. 125I-AVR9 showed specific, saturable, and reversible binding to plasma membranes isolated from leaves of tomato cultivar Moneymaker without Cf resistance genes (MM-Cf0) or from a near-isogenic genotype with the Cf-9 resistance gene (MM-Cf9). The dissociation constant was found to be 0.07 nM, and the receptor concentration was 0.8 pmol/mg microsomal protein. Binding was highly influenced by pH and the ionic strength of the binding buffer and by temperature, indicating the involvement of both electrostatic and hydrophobic interactions. Binding kinetics and binding capacity were similar for membranes of the MM-Cf0 and MM-Cf9 genotypes. In all solanaceous plant species tested, an AVR9 binding site was present, whereas in the nonsolanaceous species that were analyzed, such a binding site could not be identified. The ability of membranes isolated from different solanaceous plant species to bind AVR9 seems to correlate with the presence of members of the Cf-9 gene family, but whether this correlation is functional remains to be determined.


Molecular Plant-microbe Interactions | 2003

QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two qualitative powdery mildew resistance genes.

Yuling Bai; Cai-Cheng Huang; Ron van der Hulst; Fien Meijer-Dekens; Guusje Bonnema; Pim Lindhout

Tomato (Lycopersicon esculentum) is susceptible to the powdery mildew Oidium lycopersici, but several wild relatives such as Lycopersicon parviflorum G1.1601 are completely resistant. An F2 population from a cross of Lycopersicon esculentum cv. Moneymaker x Lycopersicon parviflorum G1.1601 was used to map the O. lycopersici resistance by using amplified fragment length polymorphism markers. The resistance was controlled by three quantitative trait loci (QTLs). Ol-qtl1 is on chromosome 6 in the same region as the Ol-1 locus, which is involved in a hypersensitive resistance response to O. lycopersici. Ol-qtl2 and Ol-qtl3 are located on chromosome 12, separated by 25 cM, in the vicinity of the Lv locus conferring resistance to another powdery mildew species, Leveillula taurica. The three QTLs, jointly explaining 68% of the phenotypic variation, were confirmed by testing F3 progenies. A set of polymerase chain reaction-based cleaved amplified polymorphic sequence and sequence characterized amplified region markers was generated for efficient monitoring of the target QTL genomic regions in marker assisted selection. The possible relationship between genes underlying major and partial resistance for tomato powdery mildew is discussed.


Journal of Integrative Bioinformatics | 2011

MADMAX - Management and analysis database for multiple ~omics experiments

Ke Lin; Harrie J. Kools; Philip J. de Groot; Anand Gavai; Ram Kumar Basnet; Feng Cheng; Jian Wu; Xiaowu Wang; Arjen Lommen; Guido Hooiveld; Guusje Bonnema; Richard G. F. Visser; Michael Müller; Jack A. M. Leunissen

The rapid increase of ~omics datasets generated by microarray, mass spectrometry and next generation sequencing technologies requires an integrated platform that can combine results from different ~omics datasets to provide novel insights in the understanding of biological systems. MADMAX is designed to provide a solution for storage and analysis of complex ~omics datasets. In addition, analysis results (such as lists of genes) will be merged to reveal candidate genes supported by all datasets. The system constitutes an ISA-Tab compliant LIMS part which is independent of different analysis pipelines. A pilot study of different type of ~omics data in Brassica rapa demonstrates the possible use of MADMAX. The web-based user interface provides easy access to data and analysis tools on top of the database.


Journal of Experimental Botany | 2009

A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time

Yu-Xiang Yuan; Jian Wu; Rifei Sun; Xiao-wei Zhang; Dong-Hui Xu; Guusje Bonnema; Xiaowu Wang

FLOWERING LOCUS C (FLC), encoding a MADS-domain transcription factor in Arabidopsis, is a repressor of flowering involved in the vernalization pathway. This provides a good reference for Brassica species. Genomes of Brassica species contain several FLC homologues and several of these colocalize with flowering-time QTL. Here the analysis of sequence variation of BrFLC1 in Brassica rapa and its association with the flowering-time phenotype is reported. The analysis revealed that a G→A polymorphism at the 5’ splice site in intron 6 of BrFLC1 is associated with flowering phenotype. Three BrFLC1 alleles with alternative splicing patterns, including two with different parts of intron 6 retained and one with the entire exon 6 excluded from the transcript, were identified in addition to alleles with normal splicing. It was inferred that aberrant splicing of the pre-mRNA leads to loss-of-function of BrFLC1. A CAPS marker was developed for this locus to distinguish Pi6+1(G) and Pi6+1(A). The polymorphism detected with this marker was significantly associated with flowering time in a collection of 121 B. rapa accessions and in a segregating Chinese cabbage doubled-haploid population. These findings suggest that a naturally occurring splicing mutation in the BrFLC1 gene contributes greatly to flowering-time variation in B. rapa.


Molecular Plant-microbe Interactions | 2005

Tomato Defense to Oidium neolycopersici: Dominant Ol Genes Confer Isolate-Dependent Resistance Via a Different Mechanism Than Recessive ol-2

Yuling Bai; Ron van der Hulst; Guusje Bonnema; Thierry C. Marcel; Fien Meijer-Dekens; Rients E. Niks; Pim Lindhout

Tomato powdery mildew caused by Oidium neolycopersici has become a globally important disease of tomato (Lycopersicon esculentum). To study the defense responses of tomato triggered by tomato powdery mildew, we first mapped a set of resistance genes to O. neolycopersici from related Lycopersicon species. An integrated genetic map was generated showing that all the dominant resistance genes (Ol-1, Ol-3, Ol-4, Ol-5, and Ol-6) are located on tomato chromosome 6 and are organized in three genetic loci. Then, near-isogenic lines (NIL) were produced that contain the different dominant Ol genes in a L. esculentum genetic background. These NIL were used in disease tests with local isolates of O. neolycopersici in different geographic locations, demonstrating that the resistance conferred by different Ol genes was isolate-dependent and, hence, may be race-specific. In addition, the resistance mechanism was analyzed histologically. The mechanism of resistance conferred by the dominant Ol genes was associated with hypersensitive response, which varies in details depending on the Ol-gene in the NIL, while the mechanism of resistance governed by the recessive gene ol-2 on tomato chromosome 4 was associated with papillae formation.


Genome | 2007

Association mapping of leaf traits, flowering time, and phytate content in Brassica rapa

Jianjun Zhao; Maria-João Paulo; Diaan C. L. Jamar; Ping Lou; F. van Eeuwijk; Guusje Bonnema; Dick Vreugdenhil; Maarten Koornneef

Association mapping was used to investigate the genetic basis of variation within Brassica rapa, which is an important vegetable and oil crop. We analyzed the variation of phytate and phosphate levels in seeds and leaves and additional developmental and morphological traits in a set of diverse B. rapa accessions and tested association of these traits with AFLP markers. The analysis of population structure revealed four subgroups in the population. Trait values differed between these subgroups, thus defining associations between population structure and trait values, even for traits such as phytate and phosphate levels. Marker-trait associations were investigated both with and without taking population structure into account. One hundred and seventy markers were found to be associated with the observed traits without correction for population structure. Association analysis with correction for population structure led to the identification of 27 markers, 6 of which had known map positions; 3 of these were confirmed in additional QTL mapping studies.


Journal of Experimental Botany | 2010

BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa

Jianjun Zhao; Vani Kulkarni; Nini Liu; Dunia Pino Del Carpio; Johan Bucher; Guusje Bonnema

Flowering time is an important agronomic trait, and wide variation exists among Brassica rapa. In Arabidopsis, FLOWERING LOCUS C (FLC) plays an important role in modulating flowering time and the response to vernalization. Brassica rapa contains several paralogues of FLC at syntenic regions. BrFLC2 maps under a major flowering time and vernalization response quantitative trait locus (QTL) at the top of A02. Here the effects of vernalization on flowering time in a double haploid (DH) population and on BrFLC2 expression in selected lines of a DH population in B. rapa are descibed. The effect of the major flowering time QTL on the top of A02 where BrFLC2 maps clearly decreases upon vernalization, which points to a role for BrFLC2 underlying the QTL. In all developmental stages and tissues (seedlings, cotyledons, and leaves), BrFLC2 transcript levels are higher in late flowering pools of DH lines than in pools of early flowering DH lines. BrFLC2 expression diminished after different durations of seedling vernalization in both early and late DH lines. The reduction of BrFLC2 expression upon seedling vernalization of both early and late flowering DH lines was strongest at the seedling stage and diminished in subsequent growth stages, which suggests that the commitment to flowering is already set at very early developmental stages. Taken together, these data support the hypothesis that BrFLC2 is a candidate gene for the flowering time and vernalization response QTL in B. rapa.


New Phytologist | 2008

Quantitative trait loci for glucosinolate accumulation in Brassica rapa leaves

Ping Lou; Jianjun Zhao; Hongju He; Corrie J. Hanhart; Dunia Pino Del Carpio; Ruud Verkerk; Jan Custers; Maarten Koornneef; Guusje Bonnema

Glucosinolates and their breakdown products have been recognized for their effects on plant defense, human health, flavor and taste of cruciferous vegetables. Despite this importance, little is known about the regulation of the biosynthesis and degradation in Brassica rapa. Here, the identification of quantitative trait loci (QTL) for glucosinolate accumulation in B. rapa leaves in two novel segregating double haploid (DH) populations is reported: DH38, derived from a cross between yellow sarson R500 and pak choi variety HK Naibaicai; and DH30, from a cross between yellow sarson R500 and Kairyou Hakata, a Japanese vegetable turnip variety. An integrated map of 1068 cM with 10 linkage groups, assigned to the international agreed nomenclature, is developed based on the two individual DH maps with the common parent using amplified fragment length polymorphism (AFLP) and single sequence repeat (SSR) markers. Eight different glucosinolate compounds were detected in parents and F(1)s of the DH populations and found to segregate quantitatively in the DH populations. QTL analysis identified 16 loci controlling aliphatic glucosinolate accumulation, three loci controlling total indolic glucosinolate concentration and three loci regulating aromatic glucosinolate concentrations. Both comparative genomic analyses based on Arabidopsis-Brassica rapa synteny and mapping of candidate orthologous genes in B. rapa allowed the selection of genes involved in the glucosinolate biosynthesis pathway that may account for the identified QTL.


Molecular Plant-microbe Interactions | 1999

Homologues of the Cf-9 Disease Resistance Gene (Hcr9s) Are Present at Multiple Loci on the Short Arm of Tomato Chromosome 1

Martin Parniske; Brande B. H. Wulff; Guusje Bonnema; Colwyn M. Thomas; David A. Jones; Jonathan D. G. Jones

The tomato Cf-4 and Cf-9 genes map at a genetically complex locus on the short arm of chromosome 1 and confer resistance against Cladosporium fulvum through recognition of different pathogen-encoded avirulence determinants. Cf-4 and Cf-9 are members of a large gene family (Hcr9s, Homologues of Cladosporium fulvum resistance gene Cf-9), some of which encode additional distinct recognition specificities. A genetic analysis of the majority of Hcr9s suggests that their distribution is spatially restricted to the short arm of chromosome 1. Two loci of clustered Hcr9 genes have been analyzed physically that mapped distal (Northern Lights) and proximal (Southern Cross) to the Cf-4/9 locus (Milky Way). Sequence homologies between intergenic regions at Southern Cross and Milky Way indicate local Hcr9 duplication preceded cluster multiplication. The multiplication of clusters involved DNA flanking Hcr9 sequences as indicated by conserved lipoxygenase sequences at Southern Cross and Milky Way. The similar spatial distribution of Hcr9 clusters in different Lycopersicon spp. suggests Hcr9 cluster multiplication preceded speciation.


Nature Genetics | 2016

Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea

Feng Cheng; Rifei Sun; Xilin Hou; Hongkun Zheng; Fenglan Zhang; Yangyong Zhang; Bo Liu; Jianli Liang; Mu Zhuang; Yunxia Liu; Dongyuan Liu; Xiaobo Wang; Pingxia Li; Yumei Liu; Ke Lin; Johan Bucher; Ningwen Zhang; Yan Wang; Hui Wang; Jie Deng; Yongcui Liao; Keyun Wei; Xueming Zhang; Lixia Fu; Yunyan Hu; Jisheng Liu; Chengcheng Cai; Shujiang Zhang; Shifan Zhang; Fei Li

Brassica species, including crops such as cabbage, turnip and oilseed, display enormous phenotypic variation. Brassica genomes have all undergone a whole-genome triplication (WGT) event with unknown effects on phenotype diversification. We resequenced 199 Brassica rapa and 119 Brassica oleracea accessions representing various morphotypes and identified signals of selection at the mesohexaploid subgenome level. For cabbage morphotypes with their typical leaf-heading trait, we identified four subgenome loci that show signs of parallel selection among subgenomes within B. rapa, as well as four such loci within B. oleracea. Fifteen subgenome loci are under selection and are shared by these two species. We also detected strong subgenome parallel selection linked to the domestication of the tuberous morphotypes, turnip (B. rapa) and kohlrabi (B. oleracea). Overall, we demonstrated that the mesohexaploidization of the two Brassica genomes contributed to their diversification into heading and tuber-forming morphotypes through convergent subgenome parallel selection of paralogous genes.

Collaboration


Dive into the Guusje Bonnema's collaboration.

Top Co-Authors

Avatar

Ruud Verkerk

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Richard G. F. Visser

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Johan Bucher

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Ram Kumar Basnet

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Dunia Pino Del Carpio

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jian Wu

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jianjun Zhao

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Ke Lin

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Pim Lindhout

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Feng Cheng

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge