Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guy Bartal is active.

Publication


Featured researches published by Guy Bartal.


Nature | 2008

Three-dimensional optical metamaterial with a negative refractive index

Jason Valentine; Shuang Zhang; Erick Ulin-Avila; Dentcho A. Genov; Guy Bartal; Xiang Zhang

Metamaterials are artificially engineered structures that have properties, such as a negative refractive index, not attainable with naturally occurring materials. Negative-index metamaterials (NIMs) were first demonstrated for microwave frequencies, but it has been challenging to design NIMs for optical frequencies and they have so far been limited to optically thin samples because of significant fabrication challenges and strong energy dissipation in metals. Such thin structures are analogous to a monolayer of atoms, making it difficult to assign bulk properties such as the index of refraction. Negative refraction of surface plasmons was recently demonstrated but was confined to a two-dimensional waveguide. Three-dimensional (3D) optical metamaterials have come into focus recently, including the realization of negative refraction by using layered semiconductor metamaterials and a 3D magnetic metamaterial in the infrared frequencies; however, neither of these had a negative index of refraction. Here we report a 3D optical metamaterial having negative refractive index with a very high figure of merit of 3.5 (that is, low loss). This metamaterial is made of cascaded ‘fishnet’ structures, with a negative index existing over a broad spectral range. Moreover, it can readily be probed from free space, making it functional for optical devices. We construct a prism made of this optical NIM to demonstrate negative refractive index at optical frequencies, resulting unambiguously from the negative phase evolution of the wave propagating inside the metamaterial. Bulk optical metamaterials open up prospects for studies of 3D optical effects and applications associated with NIMs and zero-index materials such as reversed Doppler effect, superlenses, optical tunnelling devices, compact resonators and highly directional sources.


Nature Materials | 2009

An optical cloak made of dielectrics

Jason Valentine; Jensen Tsan Hang Li; Guy Bartal; Xiang Zhang

Invisibility or cloaking has captured humans imagination for many years. With the recent advancement of metamaterials, several theoretical proposals show cloaking of objects is possible, however, so far there is a lack of an experimental demonstration at optical frequencies. Here, we report the first experimental realization of a dielectric optical cloak. The cloak is designed using quasi-conformal mapping to conceal an object that is placed under a curved reflecting surface which imitates the reflection of a flat surface. Our cloak consists only of isotropic dielectric materials which enables broadband and low-loss invisibility at a wavelength range of 1400-1800 nm.


Nature | 2007

Transport and Anderson localization in disordered two-dimensional photonic lattices

Tal Schwartz; Guy Bartal; Shmuel Fishman; Mordechai Segev

One of the most interesting phenomena in solid-state physics is Anderson localization, which predicts that an electron may become immobile when placed in a disordered lattice. The origin of localization is interference between multiple scatterings of the electron by random defects in the potential, altering the eigenmodes from being extended (Bloch waves) to exponentially localized. As a result, the material is transformed from a conductor to an insulator. Anderson’s work dates back to 1958, yet strong localization has never been observed in atomic crystals, because localization occurs only if the potential (the periodic lattice and the fluctuations superimposed on it) is time-independent. However, in atomic crystals important deviations from the Anderson model always occur, because of thermally excited phonons and electron–electron interactions. Realizing that Anderson localization is a wave phenomenon relying on interference, these concepts were extended to optics. Indeed, both weak and strong localization effects were experimentally demonstrated, traditionally by studying the transmission properties of randomly distributed optical scatterers (typically suspensions or powders of dielectric materials). However, in these studies the potential was fully random, rather than being ‘frozen’ fluctuations on a periodic potential, as the Anderson model assumes. Here we report the experimental observation of Anderson localization in a perturbed periodic potential: the transverse localization of light caused by random fluctuations on a two-dimensional photonic lattice. We demonstrate how ballistic transport becomes diffusive in the presence of disorder, and that crossover to Anderson localization occurs at a higher level of disorder. Finally, we study how nonlinearities affect Anderson localization. As Anderson localization is a universal phenomenon, the ideas presented here could also be implemented in other systems (for example, matter waves), thereby making it feasible to explore experimentally long-sought fundamental concepts, and bringing up a variety of intriguing questions related to the interplay between disorder and nonlinearity.


Science | 2008

Optical Negative Refraction in Bulk Metamaterials of Nanowires

Jie Yao; Zhaowei Liu; Yongmin Liu; Yuan Wang; Cheng Sun; Guy Bartal; Angelica M. Stacy; Xiang Zhang

Negative refraction in metamaterials has generated great excitement in the scientific community. Although negative refraction has been realized in microwave and infrared by using metamaterials and by using two-dimensional waveguide structures, creation of a bulk metamaterial showing negative refraction at visible frequency has not been successful, mainly because of the significant resonance losses and fabrication difficulties. We report bulk metamaterials made of nanowires that show such negative refraction for all incident angles in the visible region. Moreover, the negative refraction occurs far from any resonance, resulting in a low-loss and a broad-band propagation at visible frequencies. These remarkable properties can substantially affect applications such as imaging, three-dimensional light manipulation, and optical communication.


Nature Materials | 2011

Room-temperature sub-diffraction-limited plasmon laser by total internal reflection

Ren-Min Ma; Rupert F. Oulton; Volker J. Sorger; Guy Bartal; Xiang Zhang

Plasmon lasers are a new class of coherent optical amplifiers that generate and sustain light well below its diffraction limit. Their intense, coherent and confined optical fields can enhance significantly light-matter interactions and bring fundamentally new capabilities to bio-sensing, data storage, photolithography and optical communications. However, metallic plasmon laser cavities generally exhibit both high metal and radiation losses, limiting the operation of plasmon lasers to cryogenic temperatures, where sufficient gain can be attained. Here, we present a room-temperature semiconductor sub-diffraction-limited laser by adopting total internal reflection of surface plasmons to mitigate the radiation loss, while using hybrid semiconductor-insulator-metal nanosquares for strong confinement with low metal loss. High cavity quality factors, approaching 100, along with strong λ/20 mode confinement, lead to enhancements of spontaneous emission rate by up to 18-fold. By controlling the structural geometry we reduce the number of cavity modes to achieve single-mode lasing.


Nature Materials | 2009

Experimental demonstration of an acoustic magnifying hyperlens

Jensen Li; Lee Fok; Xiaobo Yin; Guy Bartal; Xiang Zhang

Acoustic metamaterials can manipulate sound waves in surprising ways, which include collimation, focusing, cloaking, sonic screening and extraordinary transmission. Recent theories suggested that imaging below the diffraction limit using passive elements can be realized by acoustic superlenses or magnifying hyperlenses. These could markedly enhance the capabilities in underwater sonar sensing, medical ultrasound imaging and non-destructive materials testing. However, these proposed approaches suffer narrow working frequency bands and significant resonance-induced loss, which hinders them from successful experimental realization. Here, we report the experimental demonstration of an acoustic hyperlens that magnifies subwavelength objects by gradually converting evanescent components into propagating waves. The fabricated acoustic hyperlens relies on straightforward cutoff-free propagation and achieves deep-subwavelength resolution with low loss over a broad frequency bandwidth.


New Journal of Physics | 2008

Confinement and propagation characteristics of subwavelength plasmonic modes

Rupert F. Oulton; Guy Bartal; David F. P. Pile; Xiang Zhang

We have studied subwavelength confinement of the surface plasmon polariton modes of various plasmonic waveguides and examined their relative merits using a graphical parametric representation of their confinement and propagation characteristics. While the same plasmonic phenomenon governs mode confinement in all these waveguides, the various architectures can exhibit distinctive behavior in terms of effective mode area and propagation distance. We found that the waveguides based on metal and one dielectric material show a similar trade-off between energy confinement and propagation distance. However, a hybrid plasmon waveguide, incorporating metal, low index and high index dielectric materials, exhibits longer propagation distances for the same degree of confinement. We also point out that plasmonic waveguides with sharp features can provide an extremely strong local field enhancement, which is not necessarily accompanied by strong confinement of the total electromagnetic energy. In these waveguides, a mode may couple strongly to nearby atoms, but suffer relatively low propagation losses due to weak confinement.


Nature Communications | 2010

Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies

Junsuk Rho; Ziliang Ye; Yi Xiong; Xiaobo Yin; Zhaowei Liu; Hyeunseok Choi; Guy Bartal; Xiang Zhang

Hyperlenses have generated much interest recently, not only because of their intriguing physics but also for their ability to achieve sub-diffraction imaging in the far field in real time. All previous efforts have been limited to sub-wavelength confinement in one dimension only and at ultraviolet frequencies, hindering the use of hyperlenses in practical applications. Here, we report the first experimental demonstration of far-field imaging at a visible wavelength, with resolution beyond the diffraction limit in two lateral dimensions. The spherical hyperlens is designed with flat hyperbolic dispersion that supports wave propagation with very large spatial frequency and yet same phase speed. This allows us to resolve features down to 160 nm, much smaller than the diffraction limit at visible wavelengths, that is, 410 nm. The hyperlens can be integrated into conventional microscopes, expanding their capabilities beyond the diffraction limit and opening a new realm in real-time nanoscopic optical imaging.


Applied Physics Letters | 2009

Split ring resonator sensors for infrared detection of single molecular monolayers

Ertugrul Cubukcu; Shuang Zhang; Yong-Shik Park; Guy Bartal; Xiang Zhang

We report a surface enhanced molecular detection technique with zeptomole sensitivity that relies on resonant coupling of plasmonic modes of split ring resonators and infrared vibrational modes of a self-assembled monolayer of octadecanthiol molecules. Large near-field enhancements at the gap of split ring resonators allow for this resonant coupling when the molecular absorption peaks overlap spectrally with the plasmonic resonance. Electromagnetic simulations support experimental findings.


Nano Letters | 2010

Transformational Plasmon Optics

Yongmin Liu; Guy Bartal; Xiang Zhang

We propose and demonstrate efficiently molding surface plasmon polaritons (SPPs) based on transformation optics. SPPs are surface modes of electromagnetic waves tightly bound at metal-dielectric interfaces, which allow us to scale optics beyond the diffraction limit. Taking advantage of transformation optics, here we show that the propagation of SPPs can be manipulated in a prescribed manner by careful control of the dielectric material properties adjacent to a metal. Since the metal properties are completely unaltered, this methodology provides a practical way for routing light at very small scales. For instance, our approach enables SPPs to travel at uneven and curved surfaces over a broad wavelength range, where SPPs would normally suffer significant scattering losses. In addition, a plasmonic 180 degrees waveguide bend and a plasmonic Luneburg lens with simple designs are presented. The unique design flexibility of the transformational plasmon optics introduced here may open a new door to nano optics and downscaling of photonic circuits.

Collaboration


Dive into the Guy Bartal's collaboration.

Top Co-Authors

Avatar

Xiang Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar

Mordechai Segev

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oren Cohen

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ofer Manela

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Volker J. Sorger

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Shuang Zhang

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge