Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guy Bellemare is active.

Publication


Featured researches published by Guy Bellemare.


Journal of Molecular Evolution | 1997

Structural and Evolutionary Relationships Among Chitinases of Flowering Plants

Francine Hamel; Rodolphe Boivin; Colette Tremblay; Guy Bellemare

Abstract. The analysis of nuclear-encoded chitinase sequences from various angiosperms has allowed the categorization of the chitinases into discrete classes. Nucleotide sequences of their catalytic domains were compared in this study to investigate the evolutionary relationships between chitinase classes. The functionally distinct class III chitinases appear to be more closely related to fungal enzymes involved in morphogenesis than to other plant chitinases. The ordering of other plant chitinases into additional classes mainly relied on the presence of auxiliary domains—namely, a chitin-binding domain and a carboxy-terminal extension—flanking the main catalytic domain. The results of our phylogenetic analyses showed that classes I and IV form discrete and well-supported monophyletic groups derived from a common ancestral sequence that predates the divergence of dicots and monocots. In contrast, other sequences included in classes I* and II, lacking one or both types of auxiliary domains, were nested within class I sequences, indicating that they have a polyphyletic origin. According to phylogenetic analyses and the calculation of evolutionary rates, these chitinases probably arose from different class I lineages by relatively recent deletion events. The occurrence of such evolutionary trends in cultivated plants and their potential involvement in host–pathogen interactions are discussed.


Molecular Genetics and Genomics | 1988

Cloning, sequencing and expression of a Bacillus bacteriolytic enzyme in Escherichia coli

Claude Potvin; Denis Leclerc; Guy Tremblay; Alain Asselin; Guy Bellemare

SummarySeveral hundred bacterial isolates were screened for bacteriolytic activity by growing them on agar medium containing autoclaved, lyophilized Micrococcus lysodeikticus cells as the substrate. A Bacillus sp. producing the largest lytic zone was selected. A genomic bank of this selected bacterium was constructed in the multi-functional vector pTZ18R, with partial SauIIIA DNA fragments inserted at the SalI restriction site. Screening of 800 colonies of this bank for cell lysis gave 5 recombinants exhibiting lytic activity, as detected by analysis of extracts of sonicated Escherichia coli cells on denaturing polyacrylamide gels containing autoclaved, lyophilized M. lysodeikticus cells as the substrate. One clone (pBH2500), expressed inE. coli strain NM522, was found to code for a lytic enzyme corresponding, in molecular weight, to the 27 kDa Bacillus sp hydrolase. This clone with an insertion of 2.5 kb was then subcloned as a 929 bp EcoRI-SauIIIA fragment in pTZ18R (pBH929) and showed higher cell lytic activity. A unique open reading frame for a protein of 251 amino acids, followed by a putative terminator sequence, was found after a consensus ribosome binding site. A putative leader sequence was identified in the first 37 amino acids. One truncated subclone (pBH703), corresponding to 196 out of 251 residues from the protein N-terminal end, still possessed lytic activity.


Medical Education | 2000

An Internet-based learning portfolio in resident education : the KOALA multicentre programme

Michael Fung Kee Fung; Mark Walker; Karen Fung Kee Fung; Lora Temple; François Lajoie; Guy Bellemare; S.C. Peter Bryson

To describe the Computerized Obstetrics and Gynecology Automated Learning Anaalysis (KOALA™), a multicentre, Internet‐based learning portfolio and to determine its effects on residents’ perception of their self‐directed learning abilities.


Journal of General Virology | 2000

Expression of a Tranosema rostrale polydnavirus gene in the spruce budworm, Choristoneura fumiferana

Catherine Béliveau; Marlène Laforge; Michel Cusson; Guy Bellemare

The endoparasitic wasp Tranosema rostrale (Ichneumonidae) transmits a polydnavirus (PDV) to its host, Choristoneura fumiferana, during oviposition. Unlike most other PDVs examined, the virus of T. rostrale (TrPDV) does not appear to play an important role in suppressing the host cellular immune response. However, it inhibits host metamorphosis. In the present study, TrPDV gene expression was examined in parasitized and virus-injected last-instar caterpillars. Northern analysis with viral DNA as a probe revealed only one detectable mRNA, of about 650 bp. The corresponding cDNA, termed TrV1, was cloned and sequenced and found to encode a protein of 103 amino acids which, following cleavage of the putative signal peptide, has a predicted molecular mass of 9.3 kDa. This protein displays limited similarity to the VHv1.4 cysteine-rich protein from the PDV of Campoletis sonorensis, mostly within the signal peptide region. By using a TrV1-specific probe, the TrV1 gene was localized to segment G of the TrPDV genome. The cuticle and fat body were identified as the principal sites of TrV1 transcription, with little transcription observed in haemocytes and midgut. Western analysis of proteins extracted from selected tissues of parasitized insects suggested that the TrV1 protein is secreted in the haemolymph. As observed for other PDVs, injection of TrPDV did not suppress transcription of the gene that encodes juvenile hormone esterase, the activity of which is inhibited by the virus. We speculate that the TrV1 protein may play a role in the inhibition of C. fumiferana metamorphosis.


Biochimica et Biophysica Acta | 1993

Sequence and expression of a gene encoding a protein with RNA-binding and glycine-rich domains in Brassica napus

Diane Bergeron; Diane Beauseigle; Guy Bellemare

A cDNA clone and its genomic counterpart were isolated from Brassica napus. The encoded protein, BnGRP10, is composed of two modules, the first one is homologous to many RNA-binding domains of ribonucleoproteins, and the second is 73% glycine rich. Northern analysis shows that this gene is expressed only in roots and stems and is slightly induced by different stress conditions.


Current Genetics | 1987

Physical mapping of differences between the chloroplast DNAs of the interfertile algae Chlamydomonas eugametos and Chlamydomonas moewusii

Monique Turmel; Guy Bellemare; Claude Lemieux

SummaryThe chloroplast genomes from the interfertile green algae Chlamydomonas eugametos and C. moewusii have been compared in their overall sequence organization. Physical mapping of Aval, BstEII and EcoRI restriction sites on the C. moewusii chloroplast genome revealed that this 292 kilobase-pair (kbp) genome is 49 kbp larger than the C. eugametos genome. Heterologous fragment hybridizations indicated the same order of common sequence elements on the two algal genomes. Almost all of the 49 kbp size difference is accounted for by the presence of two large extra sequences in C. moewusii: a 21 kbp sequence in the inverted repeat and a 5.8 kbp sequence in the single copy-region bordering the 16S ribosomal RNA (rRNA) genes. In addition to these two major deletion/addition differences, 42 restriction site and fragment length differences (ranging from 100 to 500 base pairs) were mapped on the two algal genomes. Surprisingly, the greatest density of these differences was found to be confined within the inverted repeat, one of the most conserved regions of land plant chloroplast genomes.


Biochimica et Biophysica Acta | 1995

Characterization of a class I chitinase gene and of wound-inducible, root and flower-specific chitinase expression inBrassica napus

Francine Hamel; Guy Bellemare

Complementary and genomic DNAs coding for a Brassica napus chitinase have been cloned and sequenced. The genomic DNA contains one intron and encodes a 322-amino acid basic chitinase with a 20-amino acid N-terminal signal peptide followed by a 40-amino acid cysteine-rich domain, linked by a hinge region to the main domain of the enzyme. The sequence of the cDNAs is identical to the exon sequence deduced from the genomic DNA. A probe derived from this gene identified a 1.2-kb transcript present in high amount in roots, moderate in floral tissues and low in stems and leaves. The synthesis of these transcripts is regulated during development and is induced in roots by wounding and ethephon. This type of chitinase is encoded by two sequences in Brassica napus, as shown either by Southern hybridizations or by genomic amplification and sequencing using the polymerase chain reaction. These genes are homologous to one sequence found in the Brassica oleracea genome.


Current Genetics | 1989

An optional group I intron between the chloroplast small subunit rRNA genes of Chlamydomonas moewusii and C. eugametos

Vincent Durocher; Antonin Gauthier; Guy Bellemare; Claude Lemieux

SummaryWe report the presence of a 402 by group I intron in the chloroplast small subunit (SSU) rRNA gene of Chlamydomonas moewusii. The intron is inserted within the highly conserved ‘530 loop’, at a site corresponding to positions 531–532 of the E. coli 16rRNA. Residues surrounding the insertion site almost certainly play an important role in ribosomal proofreading function as they proved to be protected by tRNAs in E. coli 16S rRNA (Moazed and Noller 1986; Stern et al. 1986). The C. moewusii intron revealed a secondary structure model which differs substantially from those of the typical subgroup IA and IB introns. This model, however, shows striking similarities with the structures of the C. reinhardtii chloroplast 23S rRNA gene intron (Rochaix et al. 1985), the S. cerevisiae mitochondrial COB3 intron (Holl et al. 1985) and the three introns of phage T4 in the nrdB, td and sunY genes (Shub et al. 1988). The SSU rRNA gene intron is absent from C. eugametos, an alga that is interfertile with C. moewusii. The presence/absence of the intron account for a 390 by restriction fragment length polymorphism between the two algal SSU rRNA genes, a polymorphic locus that is strictly co-inherited with a tightly linked streptomycin resistance mutation (sr-2) in interspecific hybrids between the two algae.


Plant Molecular Biology | 1985

A 21 kilobase-pair deletion/addition difference in the inverted repeat sequence of chloroplast DNA from Chlamydomonas eugametos and C. moewusii.

Claude Lemieux; Monique Turmel; Robert W. Lee; Guy Bellemare

SummaryOur recent physical mapping of chloroplast DNA (cpDNA) from Chlamydomonas moewusii, a unicellular green alga which is interfertile with Chlamydomonas eugametos, has revealed a two-fold size difference between the inverted repeat sequences of these algae. With a size of 42 kbp, the inverted repeat of C. moewusii is the largest yet identified in any chloroplast genome. Here we have compared the arrangement of conserved sequences within the two algal inverted repeats by hybridizing cloned restriction fragments representing over 90% of these repeats to Southern blots of cpDNA digests from the two algae. We found that the size difference between the two algal inverted repeats is due to the presence of an extra DNA segment of 21 kilobase pairs (kbp) in C. moewusii. Except for this sequence, the C. moewusii inverted repeat is highly homologous to the entire C. eugametos repeat and the arrangement of conserved sequences in the two repeats is identical. Southern hybridizations with specific gene probes revealed that the conserved sequences include the rDNA region and the genes coding for the large subunit of ribulose 1,5 bisphosphate carboxylase-oxygenase (rbcL) and for the ‘32 kilodalton’ thylakoid membrane protein (psbA). With respect to the conserved sequences, the extra 21 kbp DNA segment of C. moewusii lies in the region of psbA, most probably slightly downstream from this gene.


Current Genetics | 1994

Chloroplastic genomes of Ginkgo biloba and Chlamydomonas moewusii contain a chlB gene encoding one subunit of a light-independent protochlorophyllide reductase.

Martine Richard; Colette Tremblay; Guy Bellemare

We have cloned and sequenced a Chlamydomonas moewusii chloroplastic DNA fragment that includes a 563 amino-acid open reading frame (ORF563, chlB) presenting 89% amino-acid homology with ORF513 from Marchantia polymorpha. It is also homologous to ORF510 from Pinus thumbergii but includes two insertions absent in both M. polymorpha and P. thunbergii. The derived polypeptide is 54% similar to the product of bchB from Rhodobacter capsulatus, identified as one subunit of a light-independent NADH-protochlorophyllide reductase. We also isolated and sequenced an homologous chloroplastic gene from the gymnosperm Ginkgo biloba. Northern hybridizations performed on RNA isolated from synchronized Chlamydomonas eugametos cells showed higher expression between the tenth hour of light and the eighth hour of darkness, peaking during the first 2 h of darkness.

Collaboration


Dive into the Guy Bellemare's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge