Guy Berchem
Centre Hospitalier de Luxembourg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guy Berchem.
Oncogene | 2002
Guy Berchem; Murielle Glondu; Michel Gleizes; Jean-Paul Brouillet; Françoise Vignon; Marcel Garcia; Emmanuelle Liaudet-Coopman
Cathepsin-D is an independent marker of poor prognosis in human breast cancer. We previously showed that human wild-type cathepsin-D, as well as its mutated form devoid of proteolytic activity stably transfected in 3Y1-Ad12 cancer cells, stimulated tumor growth. To investigate the mechanisms by which human cathepsin-D and its catalytically-inactive counterpart promoted tumor growth in vivo, we quantified the expression of proliferating cell nuclear antigen, the number of blood vessels and of apoptotic cells in 3Y1-Ad12 tumor xenografts. We first verified that both human wild-type and mutated cathepsin-D were expressed at a high level in cathepsin-D xenografts, whereas no human cathepsin-D was detected in control xenografts. Our immunohistochemical studies then revealed that both wild-type cathepsin-D and catalytically-inactive cathepsin-D, increased proliferating cell nuclear antigen expression and tumor angiogenesis. Interestingly, wild-type cathepsin-D significantly inhibited tumor apoptosis, whereas catalytically-inactive cathepsin-D did not. We therefore propose that human cathepsin-D stimulates tumor growth by acting–directly or indirectly–as a mitogenic factor on both cancer and endothelial cells independently of its catalytic activity. Our overall results provide the first mechanistic evidences on the essential role of cathepsin-D at multiple tumor progression steps, affecting cell proliferation, angiogenesis and apoptosis.
Blood | 2015
Jerome Paggetti; Franziska Haderk; Martina Seiffert; Bassam Janji; Ute Distler; Wim Ammerlaan; Yeoun Jin Kim; Julien Adam; Peter Lichter; Eric Solary; Guy Berchem; Etienne Moussay
Exosomes derived from solid tumor cells are involved in immune suppression, angiogenesis, and metastasis, but the role of leukemia-derived exosomes has been less investigated. The pathogenesis of chronic lymphocytic leukemia (CLL) is stringently associated with a tumor-supportive microenvironment and a dysfunctional immune system. Here, we explore the role of CLL-derived exosomes in the cellular and molecular mechanisms by which malignant cells create this favorable surrounding. We show that CLL-derived exosomes are actively incorporated by endothelial and mesenchymal stem cells ex vivo and in vivo and that the transfer of exosomal protein and microRNA induces an inflammatory phenotype in the target cells, which resembles the phenotype of cancer-associated fibroblasts (CAFs). As a result, stromal cells show enhanced proliferation, migration, and secretion of inflammatory cytokines, contributing to a tumor-supportive microenvironment. Exosome uptake by endothelial cells increased angiogenesis ex vivo and in vivo, and coinjection of CLL-derived exosomes and CLL cells promoted tumor growth in immunodeficient mice. Finally, we detected α-smooth actin-positive stromal cells in lymph nodes of CLL patients. These findings demonstrate that CLL-derived exosomes actively promote disease progression by modulating several functions of surrounding stromal cells that acquire features of cancer-associated fibroblasts.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Etienne Moussay; Kai Wang; Ji-Hoon Cho; Kris Van Moer; Sandrine Pierson; Jerome Paggetti; Petr V. Nazarov; Valérie Palissot; Leroy Hood; Guy Berchem; David J. Galas
Early cancer detection and disease stratification or classification are critical to successful treatment. Accessible, reliable, and informative cancer biomarkers can be medically valuable and can provide some relevant insights into cancer biology. Recent studies have suggested improvements in detecting malignancies by the use of specific extracellular microRNAs (miRNAs) in plasma. In chronic lymphocytic leukemia (CLL), an incurable hematologic disorder, sensitive, early, and noninvasive diagnosis and better disease classification would be very useful for more effective therapies. We show here that circulating miRNAs can be sensitive biomarkers for CLL, because certain extracellular miRNAs are present in CLL patient plasma at levels significantly different from healthy controls and from patients affected by other hematologic malignancies. The levels of several of these circulating miRNAs also displayed significant differences between zeta-associated protein 70 (ZAP-70)+ and ZAP-70− CLL. We also determined that the level of circulating miR-20a correlates reliably with diagnosis-to-treatment time. Network analysis of our data, suggests a regulatory network associated with BCL2 and ZAP-70 expression in CLL. This hypothesis suggests the possibility of using the levels of specific miRNAs in plasma to detect CLL and to determine the ZAP-70 status.
Cancer Research | 2011
Muhammad Zaeem Noman; Bassam Janji; Bozena Kaminska; Kris Van Moer; Sandrine Pierson; Piotr Przanowski; Stéphanie Buart; Guy Berchem; Pedro Romero; Fathia Mami-Chouaib; Salem Chouaib
The relationship between hypoxic stress, autophagy, and specific cell-mediated cytotoxicity remains unknown. This study shows that hypoxia-induced resistance of lung tumor to cytolytic T lymphocyte (CTL)-mediated lysis is associated with autophagy induction in target cells. In turn, this correlates with STAT3 phosphorylation on tyrosine 705 residue (pSTAT3) and HIF-1α accumulation. Inhibition of autophagy by siRNA targeting of either beclin1 or Atg5 resulted in impairment of pSTAT3 and restoration of hypoxic tumor cell susceptibility to CTL-mediated lysis. Furthermore, inhibition of pSTAT3 in hypoxic Atg5 or beclin1-targeted tumor cells was found to be associated with the inhibition Src kinase (pSrc). Autophagy-induced pSTAT3 and pSrc regulation seemed to involve the ubiquitin proteasome system and p62/SQSTM1. In vivo experiments using B16-F10 melanoma tumor cells indicated that depletion of beclin1 resulted in an inhibition of B16-F10 tumor growth and increased tumor apoptosis. Moreover, in vivo inhibition of autophagy by hydroxychloroquine in B16-F10 tumor-bearing mice and mice vaccinated with tyrosinase-related protein-2 peptide dramatically increased tumor growth inhibition. Collectively, this study establishes a novel functional link between hypoxia-induced autophagy and the regulation of antigen-specific T-cell lysis and points to a major role of autophagy in the control of in vivo tumor growth.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Joanna Baginska; Elodie Viry; Guy Berchem; Aurélie Poli; Muhammad Zaeem Noman; Kris Van Moer; Sandrine Medves; Jacques Zimmer; Anaïs Oudin; Simone P. Niclou; R. Chris Bleackley; Ing Swie Goping; Salem Chouaib; Bassam Janji
Significance Natural killer (NK) cells are effectors of the antitumor immunity, able to kill cancer cells through the release of the cytotoxic protease granzyme B. NK-based therapies have recently emerged as promising anticancer strategies. It is well established that hypoxic microenvironment interferes with the function of antitumor immune cells and constitutes a major obstacle for cancer immunotherapies. We showed that breast cancer cells evade effective NK-mediated killing under hypoxia by activating autophagy that we have identified to be responsible for the degradation of NK-derived granzyme B. We demonstrated that blocking autophagy restored NK-mediated lysis in vitro, and facilitated breast tumor elimination by NK cells in mice. We provided evidence that targeting autophagy may pave the way to achieve more effective NK-based anticancer immunotherapy. Recent studies demonstrated that autophagy is an important regulator of innate immune response. However, the mechanism by which autophagy regulates natural killer (NK) cell-mediated antitumor immune responses remains elusive. Here, we demonstrate that hypoxia impairs breast cancer cell susceptibility to NK-mediated lysis in vitro via the activation of autophagy. This impairment was not related to a defect in target cell recognition by NK cells but to the degradation of NK-derived granzyme B in autophagosomes of hypoxic cells. Inhibition of autophagy by targeting beclin1 (BECN1) restored granzyme B levels in hypoxic cells in vitro and induced tumor regression in vivo by facilitating NK-mediated tumor cell killing. Together, our data highlight autophagy as a mechanism underlying the resistance of hypoxic tumor cells to NK-mediated lysis. The work presented here provides a cutting-edge advance in our understanding of the mechanism by which hypoxia-induced autophagy impairs NK-mediated lysis in vitro and paves the way for the formulation of more effective NK cell-based antitumor therapies.
Frontiers in Immunology | 2013
Joanna Baginska; Elodie Viry; Jerome Paggetti; Sandrine Medves; Guy Berchem; Etienne Moussay; Bassam Janji
Considerable evidence has been gathered over the last 10 years showing that the tumor microenvironment (TME) is not simply a passive recipient of immune cells, but an active participant in the establishment of immunosuppressive conditions. It is now well documented that hypoxia, within the TME, affects the functions of immune effectors including natural killer (NK) cells by multiple overlapping mechanisms. Indeed, each cell in the TME, irrespective of its transformation status, has the capacity to adapt to the hostile TME and produce immune modulatory signals or mediators affecting the function of immune cells either directly or through the stimulation of other cells present in the tumor site. This observation has led to intense research efforts focused mainly on tumor-derived factors. Notably, it has become increasingly clear that tumor cells secrete a number of environmental factors such as cytokines, growth factors, exosomes, and microRNAs impacting the immune cell response. Moreover, tumor cells in hostile microenvironments may activate their own intrinsic resistance mechanisms, such as autophagy, to escape the effective immune response. Such adaptive mechanisms may also include the ability of tumor cells to modify their metabolism and release several metabolites to impair the function of immune cells. In this review, we summarize the different mechanisms involved in the TME that affect the anti-tumor immune function of NK cells.
Oncogene | 2006
Mélanie Beaujouin; Stephen Baghdiguian; Murielle Glondu-Lassis; Guy Berchem; Emmanuelle Liaudet-Coopman
The aspartic protease cathepsin D (cath-D) is a key mediator of induced-apoptosis and its proteolytic activity has been generally involved in this event. During apoptosis, cath-D is translocated to the cytosol. Because cath-D is one of the lysosomal enzymes that requires a more acidic pH to be proteolytically active relative to the cysteine lysosomal enzymes such as cath-B and -L, it is therefore open to question whether cytosolic cath-D might be able to cleave substrate(s) implicated in the apoptotic cascade. Here, we have investigated the role of wild-type cath-D and its proteolytically inactive counterpart overexpressed by 3Y1-Ad12 cancer cells during chemotherapeutic-induced cytotoxicity and apoptosis, as well as the relevance of cath-D catalytic function. We demonstrate that wild-type or mutated catalytically inactive cath-D strongly enhances chemo-sensitivity and apoptotic response to etoposide. Both wild-type and mutated inactive cath-D are translocated to the cytosol, increasing the release of cytochrome c, the activation of caspases-9 and -3 and the induction of a caspase-dependent apoptosis. In addition, pretreatment of cells with the aspartic protease inhibitor, pepstatin A, does not prevent apoptosis. Interestingly therefore, the stimulatory effect of cath-D on cell death is independent of its catalytic activity. Overall, our results imply that cytosolic cath-D stimulates apoptotic pathways by interacting with a member of the apoptotic machinery rather than by cleaving specific substrate(s).
Tissue Antigens | 2010
A. Hamaï; Houssem Benlalam; F. Meslin; Meriem Hasmim; T. Carré; I. Akalay; Bassam Janji; Guy Berchem; Muhammad Zaeem Noman; Salem Chouaib
Accumulating evidence indicates that the innate and adaptive immune systems participate in the recognition and destruction of cancer cells by a process known as cancer immunosurveillance. Tumor antigen-specific cytotoxic T-lymphocytes (CTL) are the major effectors in the immune response against tumor cells. The identification of tumor-associated antigen (TAA) recognized primarily by CD 8(+) T-lymphocytes has led to the development of several vaccination strategies that induce or potentiate specific immune responses. However, large established tumors, which are associated with the acquisition of tumor resistance to specific lysis, are usually not fully controlled by the immune system. Recently, it has become clear that the immune system not only protects the host against tumor development but also sculpts the immunogenic phenotype of a developing tumor and can favor the emergence of resistant tumor cell variants. Moreover, it has become obvious that the evasion of immunosurveillance by tumor cells is under the control of the tumor microenvironment complexity and plasticity. In this review, we will focus on some new mechanisms associated with the acquisition of tumor resistance to specific lysis during tumor progression, involving genetic instability, structural changes in cytoskeleton, and hypoxic stress. We will also discuss the interaction between CTLs and tumor endothelial cells, a major component of tumor stroma.
The Journal of Urology | 1997
Marina Cardillo; Guy Berchem; Mary Anne Tarkington; Stanislaw Krajewski; Maryla Krajewski; John C. Reed; Timothy Tehan; Louis G. Ortega; Janice Lage; Edward P. Gelmann
PURPOSE Benign prostatic hyperplasia (BPH) is related to advancing age and the presence of androgens and occurs in virtually all older men. BPH causes morbidity, most often by urinary obstruction, in a substantial fraction of men over sixty. Both finasteride and androgen ablation induce partial diminution in BPH that occurs over weeks to months. This is in contrast to the often rapid involution seen in both normal prostatic epithelium and prostatic carcinoma in response to androgen withdrawal. This study was performed to analyze the response of prostatic cells, and in particular BPH, to acute androgen ablation. MATERIALS AND METHODS We subjected a cohort of 26 men to androgen ablation with goserelin, a gonadotrophin releasing hormone agonist, for 3-4 weeks prior to radical prostatectomy for prostate cancer. Preablation biopsy specimens and prostatectomy specimens were immunohistochemically stained for apoptotic cells and for expression of apoptosis regulatory proteins Bcl-2, Bax, Bcl-x, and Bak. RESULTS Normal prostatic epithelial cells and prostate cancer responded to hormone deprivation by undergoing apoptosis, but in 19/26 specimens prostatic hyperplasia had a total absence of apoptosis. In all 26 specimens, benign prostatic hyperplasia demonstrated increased expression of the Bcl-2 protein, but no change in the expression of Bax, Bcl-x, and Bak. In contrast, adjacent normal and malignant prostatic epithelium showed positive staining for apoptosis and did not alter Bcl-2 expression in response to androgen ablation. CONCLUSIONS BPH demonstrated increased staining for Bcl-2 after androgen deprivation that may render hyperplastic epithelium relatively resistant to apoptosis induced acutely by androgen withdrawal.
British Journal of Haematology | 2009
Amel Baya Bouzar; Mathieu Boxus; Julien Defoiche; Guy Berchem; Derek C. Macallan; Ruth Pettengell; Fenella Willis; Arsène Burny; Laurence Lagneaux; Dominique Bron; Bernard Chatelain; Christian Chatelain; Lucas Willems
Resistance to chemotherapy and drug toxicity are two major concerns of chronic lymphocytic leukaemia (B‐CLL) treatment by purine nucleoside analogues (PNA, i.e. fludarabine and cladribine). We hypothesized that targeting epigenetic changes might address these issues and evaluated the effect of the histone deacetylase inhibitor valproate (VPA) at a clinically relevant concentration. VPA acted in a highly synergistic/additive manner with fludarabine and cladribine to induce apoptosis of B‐CLL cells. Importantly, VPA also restored sensitivity to fludarabine in B cells from poor prognosis CLL patients who became resistant to chemotherapy. Mechanism of apoptosis induced by VPA alone or combined with fludarabine or to cladribine was caspase‐dependent and involved the extrinsic pathway. VPA, but neither fludarabine nor cladribine, enhanced the production of reactive oxygen species (ROS) and inhibition of ROS with N‐acetylcysteine decreases apoptosis of CLL cells. VPA stimulates hyperphosphorylation of p42/p44 ERK, cytochrome c release and overexpression of Bax and Fas. Together, our data indicate that VPA may ameliorate the outcome of PNA‐based therapeutic protocols and provide a potential alternative treatment in both the relapsed and front‐line resistant patients and in patients with high risk features.