Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guy C.-K. Chan is active.

Publication


Featured researches published by Guy C.-K. Chan.


Neuron | 1998

Cross Talk between ERK and PKA Is Required for Ca2+ Stimulation of CREB-Dependent Transcription and ERK Nuclear Translocation

Soren Impey; Karl Obrietan; Scott T. Wong; Steve Poser; Shigetoshi Yano; Gary A. Wayman; Jean Christophe Deloulme; Guy C.-K. Chan; Daniel R. Storm

Although Ca2+-stimulated cAMP response element binding protein- (CREB-) dependent transcription has been implicated in growth, differentiation, and neuroplasticity, mechanisms for Ca2+-activated transcription have not been defined. Here, we report that extracellular signal-related protein kinase (ERK) signaling is obligatory for Ca2+-stimulated transcription in PC12 cells and hippocampal neurons. The sequential activation of ERK and Rsk2 by Ca2+ leads to the phosphorylation and transactivation of CREB. Interestingly, the Ca2+-induced nuclear translocation of ERK and Rsk2 to the nucleus requires protein kinase A (PKA) activation. This may explain why PKA activity is required for Ca2+-stimulated CREB-dependent transcription. Furthermore, the full expression of the late phase of long-term potentiation (L-LTP) and L-LTP-associated CRE-mediated transcription requires ERK activation, suggesting that the activation of CREB by ERK plays a critical role in the formation of long lasting neuronal plasticity.


Neuron | 2000

Disruption of the Type III Adenylyl Cyclase Gene Leads to Peripheral and Behavioral Anosmia in Transgenic Mice

Scott T. Wong; Kien Trinh; Beth M. Hacker; Guy C.-K. Chan; Graeme Lowe; Anuj Gaggar; Zhengui Xia; Daniel R. Storm

Cyclic nucleotide-gated ion channels in olfactory sensory neurons (OSNs) are hypothesized to play a critical role in olfaction. However, it has not been demonstrated that the cAMP signaling is required for olfactory-based behavioral responses, and the contributions of specific adenylyl cyclases to olfaction have not been defined. Here, we report the presence of adenylyl cyclases 2, 3, and 4 in olfactory cilia. To evaluate the role of AC3 in olfactory responses, we disrupted the gene for AC3 in mice. Interestingly, electroolfactogram (EOG) responses stimulated by either cAMP- or inositol 1,4,5-triphosphate- (IP3-) inducing odorants were completely ablated in AC3 mutants, despite the presence of AC2 and AC4 in olfactory cilia. Furthermore, AC3 mutants failed several olfaction-based behavioral tests, indicating that AC3 and cAMP signaling are critical for olfactory-dependent behavior.


Nature Neuroscience | 2008

Circadian oscillation of hippocampal MAPK activity and cAMP: implications for memory persistence

Kristin Eckel-Mahan; Trongha X. Phan; Sung Han; Hongbing Wang; Guy C.-K. Chan; Zachary S. Scheiner; Daniel R. Storm

The mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate (cAMP) signal transduction pathways have critical roles in the consolidation of hippocampus-dependent memory. We found that extracellular regulated kinase 1/2 MAPK phosphorylation and cAMP underwent a circadian oscillation in the hippocampus that was paralleled by changes in Ras activity and the phosphorylation of MAPK kinase and cAMP response element–binding protein (CREB). The nadir of this activation cycle corresponded with severe deficits in hippocampus-dependent fear conditioning under both light-dark and free-running conditions. Circadian oscillations in cAMP and MAPK activity were absent in memory-deficient transgenic mice that lacked Ca2+-stimulated adenylyl cyclases. Furthermore, physiological and pharmacological interference with oscillations in MAPK phosphorylation after the cellular memory consolidation period impaired the persistence of hippocampus-dependent memory. These data suggest that the persistence of long-term memories may depend on reactivation of the cAMP/MAPK/CREB transcriptional pathway in the hippocampus during the circadian cycle.


The Journal of Neuroscience | 1998

Hippocampal Neurotoxicity of Δ9-Tetrahydrocannabinol

Guy C.-K. Chan; Thomas R. Hinds; Soren Impey; Daniel R. Storm

Marijuana consumption elicits diverse physiological and psychological effects in humans, including memory loss. Here we report that Δ9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana, is toxic for hippocampal neurons. Treatment of cultured neurons or hippocampal slices with THC caused shrinkage of neuronal cell bodies and nuclei as well as genomic DNA strand breaks, hallmarks of neuronal apoptosis. Neuron death induced by THC was inhibited by nonsteroidal anti-inflammatory drugs, including indomethacin and aspirin, as well as vitamin E and other antioxidants. Furthermore, treatment of neurons with THC stimulated a significant increase in the release of arachidonic acid. We hypothesize that THC neurotoxicity is attributable to activation of the prostanoid synthesis pathway and generation of free radicals by cyclooxygenase. These data suggest that some of the memory deficits caused by cannabinoids may be caused by THC neurotoxicity.


Neuron | 1998

Phosphorylation and inhibition of olfactory adenylyl cyclase by CaM kinase II in Neurons: a mechanism for attenuation of olfactory signals.

Jia Wei; Allan Z. Zhao; Guy C.-K. Chan; Lauren P. Baker; Soren Impey; Joseph A. Beavo; Daniel R. Storm

Acute desensitization of olfactory signaling is a critical property of the olfactory system that allows animals to detect and respond to odorants. Correspondingly, an important feature of odorant-stimulated cAMP increases is their transient nature, a phenomenon that may be attributable to the unique regulatory properties of the olfactory adenylyl cyclase (AC3). AC3 is stimulated by receptor activation and inhibited by Ca2+ through Ca2+/calmodulin kinase II (CaMKII) phosphorylation at Ser-1076. Since odorant-stimulated cAMP increases are accompanied by elevated intracellular Ca2+, CaMKII inhibition of AC3 may contribute to termination of olfactory signaling. To test this hypothesis, we generated a polyclonal antibody specific for AC3 phosphorylated at Ser-1076. A brief exposure of mouse olfactory cilia or primary olfactory neurons to odorants stimulated phosphorylation of AC3 at Ser-1076. This phosphorylation was blocked by inhibitors of CaMKII, which also ablated cAMP decreases associated with odorant-stimulated cAMP transients. These data define a novel mechanism for termination of olfactory signaling that may be important in olfactory responses.


The Journal of Neuroscience | 2006

Pheromone detection in male mice depends on signaling through the type 3 adenylyl cyclase in the main olfactory epithelium.

Zhenshan Wang; Carlos Sindreu; Vicky Li; Aaron S. Nudelman; Guy C.-K. Chan; Daniel R. Storm

Terrestrial vertebrates have evolved two anatomically and mechanistically distinct chemosensory structures: the main olfactory epithelium (MOE) and the vomeronasal organ (VNO). Although it has been generally thought that pheromones are detected through the VNO, whereas other chemicals are sensed by the MOE, recent evidence suggests that some pheromones may be detected through the MOE. Odorant receptors in the MOE are coupled to the type 3 adenylyl cyclase (AC3), an enzyme not expressed in the VNO. Consequently, odorants and pheromones do not elicit electrophysiological responses in the MOE of AC3−/−mice, although VNO function is intact. Here we report that AC3−/−mice cannot detect mouse milk, urine, or mouse pheromones. Inter-male aggressiveness and male sexual behaviors are absent in AC3−/−mice. Furthermore, adenylyl cyclase activity in membranes prepared from the MOE of wild-type mice, but not AC3−/−mice, is stimulated by 2-heptanone, a mouse pheromone. We conclude that signaling through AC3 in the MOE is obligatory for male sexual behavior, male–male aggressiveness, and the detection of some pheromones.


The Journal of Neuroscience | 2005

Calcium-Stimulated Adenylyl Cyclases Are Critical Modulators of Neuronal Ethanol Sensitivity

James W. Maas; Sherri K. Vogt; Guy C.-K. Chan; Victor V. Pineda; Daniel R. Storm; Louis J. Muglia

The importance of the cAMP signaling pathway in the modulation of ethanol sensitivity has been suggested by studies in organisms from Drosophila melanogaster to man. However, the involvement of specific isoforms of adenylyl cyclase (AC), the molecule that converts ATP to cAMP, has not been systemically determined in vivo. Because AC1 and AC8 are the only AC isoforms stimulated by calcium, and ethanol modulates calcium flux by the NMDA receptor, we hypothesized that these ACs would be important in the neural response to ethanol. AC1 knock-out (KO) mice and double knock-out (DKO) mice with genetic deletion of both AC1 and AC8 display substantially increased sensitivity to ethanol-induced sedation compared with wild-type (WT) mice, whereas AC8 KO mice are only minimally more sensitive. In contrast, AC8 KO and DKO mice, but not AC1 KO mice, demonstrate decreased voluntary ethanol consumption compared with WT mice. DKO mice do not display increased sleep time compared with WT mice after administration of ketamine or pentobarbital, indicating that the mechanism of enhanced ethanol sensitivity in these mice is likely distinct from the antagonism of ethanol of the NMDA receptor and potentiation of the GABAA receptor. Ethanol does not enhance calcium-stimulated AC activity, but the ethanol-induced phosphorylation of a discrete subset of protein kinase A (PKA) substrates is compromised in the brains of DKO mice. These results indicate that the unique activation of PKA signaling mediated by the calcium-stimulated ACs is an important component of the neuronal response to ethanol.


The Journal of Neuroscience | 2004

Gating of the cAMP signaling cascade and melatonin synthesis by the circadian clock in mammalian retina.

Chiaki Fukuhara; Cuimei Liu; Tamara N. Ivanova; Guy C.-K. Chan; Daniel R. Storm; P. Michael Iuvone; Gianluca Tosini

Melatonin is synthesized in retinal photoreceptor cells and acts as a neuromodulator imparting photoperiodic information to the retina. The synthesis of melatonin is controlled by an ocular circadian clock and by light in a finely tuned mechanism that ensures that melatonin is synthesized and acts only at night in darkness. Here we report that the circadian clock gates melatonin synthesis in part by regulating the expression of the type 1 adenylyl cyclase (AC1) and the synthesis of cAMP in photoreceptor cells. This gating is effected through E-box-mediated transcriptional activation of the AC1 gene, which undergoes robust daily fluctuations that persist in constant illumination. The circadian control of the cAMP signaling cascade indicates that the clock has a more general and profound impact on retinal functions than previously thought. In addition, rhythmic control of AC1 expression was observed in other parts of the central circadian axis, the suprachiasmatic nucleus and pineal gland, but not in other brain areas examined. Thus, clock control of the cAMP signaling cascade may play a central role in the integration of circadian signals that control physiology and behavior.


PLOS ONE | 2009

Adult Type 3 Adenylyl Cyclase–Deficient Mice Are Obese

Zhenshan Wang; Vicky Li; Guy C.-K. Chan; Trongha X. Phan; Aaron S. Nudelman; Zhengui Xia; Daniel R. Storm

Background A recent study of obesity in Swedish men found that polymorphisms in the type 3 adenylyl cyclase (AC3) are associated with obesity, suggesting the interesting possibility that AC3 may play a role in weight control. Therefore, we examined the weight of AC3 mice over an extended period of time. Methodology/Principal Findings We discovered that AC3−/− mice become obese as they age. Adult male AC3−/− mice are about 40% heavier than wild type male mice while female AC3−/− are 70% heavier. The additional weight of AC3−/− mice is due to increased fat mass and larger adipocytes. Before the onset of obesity, young AC3−/− mice exhibit reduced physical activity, increased food consumption, and leptin insensitivity. Surprisingly, the obesity of AC3−/− mice is not due to a loss of AC3 from white adipose and a decrease in lipolysis. Conclusions/Significance We conclude that mice lacking AC3 exhibit obesity that is apparently caused by low locomotor activity, hyperphagia, and leptin insensitivity. The presence of AC3 in primary cilia of neurons of the hypothalamus suggests that cAMP signals generated by AC3 in the hypothalamus may play a critical role in regulation of body weight.


The Journal of Neuroscience | 2012

Inhibition of Adult Neurogenesis by Inducible and Targeted Deletion of ERK5 Mitogen-Activated Protein Kinase Specifically in Adult Neurogenic Regions Impairs Contextual Fear Extinction and Remote Fear Memory

Yung Wei Pan; Guy C.-K. Chan; Chay T. Kuo; Daniel R. Storm; Zhengui Xia

Although there is evidence suggesting that adult neurogenesis may contribute to hippocampus-dependent memory, signaling mechanisms responsible for adult hippocampal neurogenesis are not well characterized. Here we report that ERK5 mitogen-activated protein kinase is specifically expressed in the neurogenic regions of the adult mouse brain. The inducible and conditional knock-out (icKO) of erk5 specifically in neural progenitors of the adult mouse brain attenuated adult hippocampal neurogenesis. It also caused deficits in several forms of hippocampus-dependent memory, including contextual fear conditioning generated by a weak footshock. The ERK5 icKO mice were also deficient in contextual fear extinction and reversal of Morris water maze spatial learning and memory, suggesting that adult neurogenesis plays an important role in hippocampus-dependent learning flexibility. Furthermore, our data suggest a critical role for ERK5-mediated adult neurogenesis in pattern separation, a form of dentate gyrus-dependent spatial learning and memory. Moreover, ERK5 icKO mice have no memory 21 d after training in the passive avoidance test, suggesting a pivotal role for adult hippocampal neurogenesis in the expression of remote memory. Together, our results implicate ERK5 as a novel signaling molecule regulating adult neurogenesis and provide strong evidence that adult neurogenesis is critical for several forms of hippocampus-dependent memory formation, including fear extinction, and for the expression of remote memory.

Collaboration


Dive into the Guy C.-K. Chan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Greg E. Davis

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Hongbing Wang

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Jack J. Liu

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Soren Impey

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Zhengui Xia

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Avi S. Hecht

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Carlos Sindreu

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Dan R. Storm

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge