Guy Caljon
University of Antwerp
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guy Caljon.
PLOS Pathogens | 2010
Jan Van Den Abbeele; Guy Caljon; Karin De Ridder; Patrick De Baetselier; Marc Coosemans
Tsetse flies are the notorious transmitters of African trypanosomiasis, a disease caused by the Trypanosoma parasite that affects humans and livestock on the African continent. Metacyclic infection rates in natural tsetse populations with Trypanosoma brucei, including the two human-pathogenic subspecies, are very low, even in epidemic situations. Therefore, the infected fly/host contact frequency is a key determinant of the transmission dynamics. As an obligate blood feeder, tsetse flies rely on their complex salivary potion to inhibit host haemostatic reactions ensuring an efficient feeding. The results of this experimental study suggest that the parasite might promote its transmission through manipulation of the tsetse feeding behavior by modifying the saliva composition. Indeed, salivary gland Trypanosoma brucei-infected flies display a significantly prolonged feeding time, thereby enhancing the likelihood of infecting multiple hosts during the process of a single blood meal cycle. Comparison of the two major anti-haemostatic activities i.e. anti-platelet aggregation and anti-coagulation activity in these flies versus non-infected tsetse flies demonstrates a significant suppression of these activities as a result of the trypanosome-infection status. This effect was mainly related to the parasite-induced reduction in salivary gland gene transcription, resulting in a strong decrease in protein content and related biological activities. Additionally, the anti-thrombin activity and inhibition of thrombin-induced coagulation was even more severely hampered as a result of the trypanosome infection. Indeed, while naive tsetse saliva strongly inhibited human thrombin activity and thrombin-induced blood coagulation, saliva from T. brucei-infected flies showed a significantly enhanced thrombinase activity resulting in a far less potent anti-coagulation activity. These data clearly provide evidence for a trypanosome-mediated modification of the tsetse salivary composition that results in a drastically reduced anti-haemostatic potential and a hampered feeding performance which could lead to an increase of the vector/host contact and parasite transmission in field conditions.
Infection and Immunity | 2006
Guy Caljon; Jan Van Den Abbeele; Benoît Stijlemans; Marc Coosemans; Patrick De Baetselier; Stefan Magez
ABSTRACT Tsetse flies (Glossina sp.) are the vectors that transmit African trypanosomes, protozoan parasites that cause human sleeping sickness and veterinary infections in the African continent. These blood-feeding dipteran insects deposit saliva at the feeding site that enables the blood-feeding process. Here we demonstrate that tsetse fly saliva also accelerates the onset of a Trypanosoma brucei infection. This effect was associated with a reduced inflammatory reaction at the site of infection initiation (reflected by a decrease of interleukin-6 [IL-6] and IL-12 mRNA) as well as lower serum concentrations of the trypanocidal cytokine tumor necrosis factor. Variant-specific surface glycoprotein-specific antibody isotypes immunoglobulin M (IgM) and IgG2a, implicated in trypanosome clearance, were not suppressed. We propose that tsetse fly saliva accelerates the onset of trypanosome infection by inhibiting local and systemic inflammatory responses involved in parasite control.
Microbial Cell Factories | 2012
Linda De Vooght; Guy Caljon; Benoît Stijlemans; Patrick De Baetselier; Marc Coosemans; Jan Van Den Abbeele
BackgroundSodalis glossinidius, a gram-negative bacterial endosymbiont of the tsetse fly, has been proposed as a potential in vivo drug delivery vehicle to control trypanosome parasite development in the fly, an approach known as paratransgenesis. Despite this interest of S. glossinidius as a paratransgenic platform organism in tsetse flies, few potential effector molecules have been identified so far and to date none of these molecules have been successfully expressed in this bacterium.ResultsIn this study, S. glossinidius was transformed to express a single domain antibody, (Nanobody®) Nb_An33, that efficiently targets conserved cryptic epitopes of the variant surface glycoprotein (VSG) of the parasite Trypanosoma brucei. Next, we analyzed the capability of two predicted secretion signals to direct the extracellular delivery of significant levels of active Nb_An33. We show that the pelB leader peptide was successful in directing the export of fully functional Nb_An33 to the periplasm of S. glossinidius resulting in significant levels of extracellular release. Finally, S. glossinidius expressing pelBNb_An33 exhibited no significant reduction in terms of fitness, determined by in vitro growth kinetics, compared to the wild-type strain.ConclusionsThese data are the first demonstration of the expression and extracellular release of functional trypanosome-interfering Nanobodies® in S. glossinidius. Furthermore, Sodalis strains that efficiently released the effector protein were not affected in their growth, suggesting that they may be competitive with endogenous microbiota in the midgut environment of the tsetse fly. Collectively, these data reinforce the notion for the potential of S. glossinidius to be developed into a paratransgenic platform organism.
PLOS Pathogens | 2011
Viki Bockstal; Patrick Guirnalda; Guy Caljon; Radhika Goenka; Janice C. Telfer; Deborah Frenkel; Magdalena Radwanska; Stefan Magez; Samuel J. Black
African trypanosomes of the Trypanosoma brucei species are extracellular protozoan parasites that cause the deadly disease African trypanosomiasis in humans and contribute to the animal counterpart, Nagana. Trypanosome clearance from the bloodstream is mediated by antibodies specific for their Variant Surface Glycoprotein (VSG) coat antigens. However, T. brucei infection induces polyclonal B cell activation, B cell clonal exhaustion, sustained depletion of mature splenic Marginal Zone B (MZB) and Follicular B (FoB) cells, and destruction of the B-cell memory compartment. To determine how trypanosome infection compromises the humoral immune defense system we used a C57BL/6 T. brucei AnTat 1.1 mouse model and multicolor flow cytometry to document B cell development and maturation during infection. Our results show a more than 95% reduction in B cell precursor numbers from the CLP, pre-pro-B, pro-B, pre-B and immature B cell stages in the bone marrow. In the spleen, T. brucei induces extramedullary B lymphopoiesis as evidenced by significant increases in HSC-LMPP, CLP, pre-pro-B, pro-B and pre-B cell populations. However, final B cell maturation is abrogated by infection-induced apoptosis of transitional B cells of both the T1 and T2 populations which is not uniquely dependent on TNF-, Fas-, or prostaglandin-dependent death pathways. Results obtained from ex vivo co-cultures of living bloodstream form trypanosomes and splenocytes demonstrate that trypanosome surface coat-dependent contact with T1/2 B cells triggers their deletion. We conclude that infection-induced and possibly parasite-contact dependent deletion of transitional B cells prevents replenishment of mature B cell compartments during infection thus contributing to a loss of the hosts capacity to sustain antibody responses against recurring parasitemic waves.
PLOS Pathogens | 2016
Guy Caljon; Nick Van Reet; Carl De Trez; Marjorie Vermeersch; David Perez-Morga; Jan Van Den Abbeele
Tsetse flies are the sole vectors of Trypanosoma brucei parasites that cause sleeping sickness. Our knowledge on the early interface between the infective metacyclic forms and the mammalian host skin is currently highly limited. Glossina morsitans flies infected with fluorescently tagged T. brucei parasites were used in this study to initiate natural infections in mice. Metacyclic trypanosomes were found to be highly infectious through the intradermal route in sharp contrast with blood stream form trypanosomes. Parasite emigration from the dermal inoculation site resulted in detectable parasite levels in the draining lymph nodes within 18 hours and in the peripheral blood within 42 h. A subset of parasites remained and actively proliferated in the dermis. By initiating mixed infections with differentially labeled parasites, dermal parasites were unequivocally shown to arise from the initial inoculum and not from a re-invasion from the blood circulation. Scanning electron microscopy demonstrated intricate interactions of these skin-residing parasites with adipocytes in the connective tissue, entanglement by reticular fibers of the periadipocytic baskets and embedment between collagen bundles. Experimental transmission experiments combined with molecular parasite detection in blood fed flies provided evidence that dermal trypanosomes can be acquired from the inoculation site immediately after the initial transmission. High resolution thermographic imaging also revealed that intradermal parasite expansion induces elevated skin surface temperatures. Collectively, the dermis represents a delivery site of the highly infective metacyclic trypanosomes from which the host is systemically colonized and where a proliferative subpopulation remains that is physically constrained by intricate interactions with adipocytes and collagen fibrous structures.
PLOS ONE | 2010
Guy Caljon; Karin De Ridder; Patrick De Baetselier; Marc Coosemans; Jan Van Den Abbeele
Background Tsetse flies (Glossina sp.), the African trypanosome vectors, rely on anti-hemostatic compounds for efficient blood feeding. Despite their medical importance, very few salivary proteins have been characterized and functionally annotated. Methodology/Principal Findings Here we report on the functional characterisation of a 5′nucleotidase-related (5′Nuc) saliva protein of the tsetse fly Glossina morsitans morsitans. This protein is encoded by a 1668 bp cDNA corresponding at the genomic level with a single-copy 4 kb gene that is exclusively transcribed in the tsetse salivary gland tissue. The encoded 5′Nuc protein is a soluble 65 kDa glycosylated compound of tsetse saliva with a dual anti-hemostatic action that relies on its combined apyrase activity and fibrinogen receptor (GPIIb/IIIa) antagonistic properties. Experimental evidence is based on the biochemical and functional characterization of recombinant protein and on the successful silencing of the 5′nuc translation in the salivary gland by RNA interference (RNAi). Refolding of a 5′Nuc/SUMO-fusion protein yielded an active apyrase enzyme with Km and Vmax values of 43±4 µM and 684±49 nmol Pi/min×mg for ATPase and 49±11 µM and 177±37 nmol Pi/min×mg for the ADPase activity. In addition, recombinant 5′Nuc was found to bind to GPIIb/IIIa with an apparent KD of 92±25 nM. Consistent with these features, 5′Nuc potently inhibited ADP-induced thrombocyte aggregation and even caused disaggregation of ADP-triggered human platelets. The importance of 5′Nuc for the tsetse fly hematophagy was further illustrated by specific RNAi that reduced the anti-thrombotic activities in saliva by approximately 50% resulting in a disturbed blood feeding process. Conclusions/Significance These data show that this 5′nucleotidase-related apyrase exhibits GPIIb/IIIa antagonistic properties and represents a key thromboregulatory compound of tsetse fly saliva.
Infection and Immunity | 2002
Stefan Magez; Benoı̂t Stijlemans; Guy Caljon; H.-P. Eugster; P de Baetselier
ABSTRACT Trypanosome infections are marked by severe pathological features, including anemia, splenomegaly, and suppression of T-cell proliferation. We have used lymphotoxin-α-deficient (LT-α−/−) mice, as well as LT-α-tumor necrosis factor-double-deficient (LT-α−/− TNF−/−) mice, to analyze the contributions of these related cytokines in both induction of trypanosomosis-associated immunopathology and infection control. Moreover, as the cytokine-deficient mice used have no detectable lymph nodes and lack germinal-center formation upon immune stimulation, we have analyzed the functional importance of both the lymph nodes and spleen during experimental Trypanosoma brucei infections. First, we show that the absence of LT-α does not significantly alter early trypanosomosis development or pathology but does result in better control of late-stage parasitemia levels and slightly prolonged survival. This increased survival of infected LT-α−/− mice coincides with the appearance of increased chronic-stage anti-trypanosome immunoglobulin M (IgM)-IgG2a serum titers that are generated in the absence of functional peripheral lymphoid tissue and do not require germinal-center formation. Second, we show that splenectomized mice control their parasitemia to the same extent as fully immune-competent littermates. Finally, using LT-α−/− TNF−/− double-deficient mice, we show that in these mice T. brucei infections are very well controlled during the chronic infection stage and that infection-induced pathology is minimized. Together, these findings indicate that while increased IgM-IgG2a anti-trypanosome antibody titers (generated in the absence of LT-α, peripheral lymph nodes, and germinal-center formation) coincide with improved parasitemia control, it is TNF that has a major impact on trypanosomosis-associated immunopathology.
Parasitology | 2010
Stefan Magez; Guy Caljon; Thao Tran; Benoît Stijlemans; Magdalena Radwanska
Anti-trypanosomiasis vaccination still remains the best theoretical option in the fight against a disease that is continuously hovering between its wildlife reservoir and its reservoir in man and livestock. While antigenic variation of the parasite surface coat has been considered the major obstacle in the development of a functional vaccine, recent research into the biology of B cells has indicated that the problems might go further than that. This paper reviews past and current attempts to design both anti-trypanosome vaccines, as well as vaccines directed towards the inhibition of infection-associated pathology.
PLOS ONE | 2016
A. Mondelaers; María P. Sánchez-Cañete; Sarah Hendrickx; E. Eberhardt; Raquel García-Hernández; Laurence Lachaud; James A. Cotton; Mandy Sanders; Bart Cuypers; Hideo Imamura; Jean-Claude Dujardin; Peter Delputte; Paul Cos; Guy Caljon; Francisco Gamarro; Santiago Castanys; Louis Maes
During the last decade miltefosine (MIL) has been used as first-line treatment for visceral leishmaniasis in endemic areas with antimonial resistance, but a decline in clinical effectiveness is now being reported. While only two MIL-resistant Leishmania infantum strains from HIV co-infected patients have been documented, phenotypic MIL-resistance for L. donovani has not yet been identified in the laboratory. Hence, a better understanding of the factors contributing to increased MIL-treatment failure is necessary. Given the paucity of defined MIL-resistant L. donovani clinical isolates, this study used an experimental amastigote-selected MIL-resistant L. infantum isolate (LEM3323). In-depth exploration of the MIL-resistant phenotype was performed by coupling genomic with phenotypic data to gain insight into gene function and the mutant phenotype. A naturally MIL-resistant L. infantum clinical isolate (LEM5159) was included to compare both datasets. Phenotypically, resistance was evaluated by determining intracellular amastigote susceptibility in vitro and actual MIL-uptake. Genomic analysis provided supportive evidence that the resistance selection model on intracellular amastigotes can be a good proxy for the in vivo field situation since both resistant strains showed mutations in the same inward transporter system responsible for the acquired MIL-resistant phenotype. In line with previous literature findings in promastigotes, our data confirm a defective import machinery through inactivation of the LiMT/LiRos3 protein complex as the main mechanism for MIL-resistance also in intracellular amastigotes. Whole genome sequencing analysis of LEM3323 revealed a 2 base pair deletion in the LiMT gene that led to the formation an early stop codon and a truncation of the LiMT protein. Interestingly, LEM5159 revealed mutations in both the LiMT and LiRos3 genes, resulting in an aberrant expression of the LiMT protein. To verify that these mutations were indeed accountable for the acquired resistance, transfection experiments were performed to re-establish MIL-susceptibility. In LEM3323, susceptibility was restored upon expression of a LiMT wild-type gene, whereas the MIL-susceptibility of LEM5159 could be reversed after expression of the LiRos3 wild-type gene. The aberrant expression profile of the LiMT protein could be restored upon rescue of the LiRos3 gene both in the LEM5159 clinical isolate and a ΔLiRos3 strain, showing that expression of LdMT is dependent on LdRos3 expression. The present findings clearly corroborate the pivotal role of the LiMT/LiRos3 complex in resistance towards MIL.
PLOS Pathogens | 2013
Géraldine De Muylder; Sylvie Daulouède; Laurence Lecordier; Pierrick Uzureau; Yannick Morias; Jan Van Den Abbeele; Guy Caljon; Michel Hérin; Philippe Holzmuller; Silla Semballa; Pierrette Courtois; Luc Vanhamme; Benoı̂t Stijlemans; Patrick De Baetselier; Michael P. Barrett; Jillian L. Barlow; Andrew N. J. McKenzie; Luke Barron; Thomas A. Wynn; Alain Beschin; Philippe Vincendeau; Etienne Pays
Background In order to promote infection, the blood-borne parasite Trypanosoma brucei releases factors that upregulate arginase expression and activity in myeloid cells. Methodology/Principal findings By screening a cDNA library of T. brucei with an antibody neutralizing the arginase-inducing activity of parasite released factors, we identified a Kinesin Heavy Chain isoform, termed TbKHC1, as responsible for this effect. Following interaction with mouse myeloid cells, natural or recombinant TbKHC1 triggered SIGN-R1 receptor-dependent induction of IL-10 production, resulting in arginase-1 activation concomitant with reduction of nitric oxide (NO) synthase activity. This TbKHC1 activity was IL-4Rα-independent and did not mirror M2 activation of myeloid cells. As compared to wild-type T. brucei, infection by TbKHC1 KO parasites was characterized by strongly reduced parasitaemia and prolonged host survival time. By treating infected mice with ornithine or with NO synthase inhibitor, we observed that during the first wave of parasitaemia the parasite growth-promoting effect of TbKHC1-mediated arginase activation resulted more from increased polyamine production than from reduction of NO synthesis. In late stage infection, TbKHC1-mediated reduction of NO synthesis appeared to contribute to liver damage linked to shortening of host survival time. Conclusion A kinesin heavy chain released by T. brucei induces IL-10 and arginase-1 through SIGN-R1 signaling in myeloid cells, which promotes early trypanosome growth and favors parasite settlement in the host. Moreover, in the late stage of infection, the inhibition of NO synthesis by TbKHC1 contributes to liver pathogenicity.