Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guy G. Poirier is active.

Publication


Featured researches published by Guy G. Poirier.


Cell | 1995

Yama/CPP32β, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase

Muneesh Tewari; Long T. Quan; Karen O'Rourke; Serge Desnoyers; Zhi Zeng; David R. Beidler; Guy G. Poirier; Guy S. Salvesen; Vishva M. Dixit

Abstract Although the mechanism of mammalian apoptosis has not been elucidated, a protease of the CED-3/ICE family is anticipated to be a component of the death machinery. Several lines of evidence predict that this protease cleaves the death substrate poly(ADP-ribose) polymerase (PARP) to a specific 85 kDa form observed during apoptosis, is inhibitable by the CrmA protein, and is distinct from ICE. We cloned a ced-3/ICE -related gene, designated Yama , that encodes a protein identical to CPP32β. Purified Yama was a zymogen that, when activated, cleaved PARP to generate the 85 kDa apoptotic fragment. Cleavage of PARP by Yama was inhibited by CrmA but not by an inactive point mutant of CrmA. Furthermore, CrmA blocked cleavage of PARP in cells undergoing apoptosis. We propose that Yama may represent an effector component of the mammalian cell death pathway and suggest that CrmA blocks apoptosis by inhibiting Yama.


Nature Reviews Cancer | 2010

PARP inhibition: PARP1 and beyond

Michèle Rouleau; Anand Patel; Michael J. Hendzel; Scott H. Kaufmann; Guy G. Poirier

Recent findings have thrust poly(ADP-ribose) polymerases (PARPs) into the limelight as potential chemotherapeutic targets. To provide a framework for understanding these recent observations, we review what is known about the structures and functions of the family of PARP enzymes, and then outline a series of questions that should be addressed to guide the rational development of PARP inhibitors as anticancer agents.


Trends in Biochemical Sciences | 1995

Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks

Tomas Lindahl; Masahiko S. Satoh; Guy G. Poirier; Arne Klungland

There are one million molecules of poly(ADP-ribose) polymerase (PARP) in mammalian cell nuclei and the enzyme is found in most eukaryotes, with the notable exception of yeasts. In response to DNA damage caused by ionizing radiation or alkylating agents, PARP binds to strand interruptions in DNA and undergoes rapid automodification with synthesis of long branched polymers of highly negatively charged poly(ADP-ribose). DNA repair occurs after dissociation of modified PARP from DNA strand breaks. Biochemical data with enzyme-depleted extracts and studies of enzyme-deficient mice show that PARP does not participate directly in DNA repair. Possible roles for poly(ADP-ribose) synthesis are discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death

Seong Woon Yu; Shaida A. Andrabi; Hongmin Wang; No Soo Kim; Guy G. Poirier; Ted M. Dawson; Valina L. Dawson

Apoptosis-inducing factor (AIF), a mitochondrial oxidoreductase, is released into the cytoplasm to induce cell death in response to poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) activation. How PARP-1 activation leads to AIF release is not known. Here we identify PAR polymer as a cell death signal that induces release of AIF. PAR polymer induces mitochondrial AIF release and translocation to the nucleus. PAR glycohydrolase, which degrades PAR polymer, prevents PARP-1-dependent AIF release. Cells with reduced levels of AIF are resistant to PARP-1-dependent cell death and PAR polymer cytotoxicity. These results reveal PAR polymer as an AIF-releasing factor that plays important roles in PARP-1-dependent cell death.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Poly(ADP-ribose) (PAR) polymer is a death signal

Shaida A. Andrabi; No Soo Kim; Seong Woon Yu; Hongmin Wang; David W. Koh; Masayuki Sasaki; Judith A. Klaus; Takashi Otsuka; Zhizheng Zhang; Raymond C. Koehler; Patricia D. Hurn; Guy G. Poirier; Valina L. Dawson; Ted M. Dawson

Excessive activation of the nuclear enzyme, poly(ADP-ribose) polymerase-1 (PARP-1) plays a prominent role in various of models of cellular injury. Here, we identify poly(ADP-ribose) (PAR) polymer, a product of PARP-1 activity, as a previously uncharacterized cell death signal. PAR polymer is directly toxic to neurons, and degradation of PAR polymer by poly(ADP-ribose) glycohydrolase (PARG) or phosphodiesterase 1 prevents PAR polymer-induced cell death. PARP-1-dependent, NMDA excitotoxicity of cortical neurons is reduced by neutralizing antibodies to PAR and by overexpression of PARG. Neuronal cultures with reduced levels of PARG are more sensitive to NMDA excitotoxicity than WT cultures. Transgenic mice overexpressing PARG have significantly reduced infarct volumes after focal ischemia. Conversely, mice with reduced levels of PARG have significantly increased infarct volumes after focal ischemia compared with WT littermate controls. These results reveal PAR polymer as a signaling molecule that induces cell death and suggests that interference with PAR polymer signaling may offer innovative therapeutic approaches for the treatment of cellular injury.


Journal of Biological Chemistry | 1996

ICE-LAP6, a novel member of the ICE/Ced-3 gene family, is activated by the cytotoxic T cell protease granzyme B.

Hangjun Duan; Kim Orth; Arul M. Chinnaiyan; Guy G. Poirier; Christopher J. Froelich; Wei Wu He; Vishva M. Dixit

Members of the ICE/Ced-3 gene family are likely effector components of the cell death machinery. Here, we characterize a novel member of this family designated ICE-LAP6. By phylogenetic analysis, ICE-LAP6 is classified into the Ced-3 subfamily which includes Ced-3, Yama/CPP32/apopain, Mch2, and ICE-LAP3/Mch3/CMH-1. Interestingly, ICE-LAP6 contains an active site QACG pentapeptide, rather than the QACG pentapeptide shared by other family members. Overexpression of ICE-LAP6 induces apoptosis in MCF7 breast carcinoma cells. More importantly, ICE-LAP6 is proteolytically processed into an active cysteine protease by granzyme B, an important component of cytotoxic T cell-mediated apoptosis. Once activated, ICE-LAP6 is able to cleave the death substrate poly(ADP-ribose) polymerase into signature apoptotic fragments.


Current Biology | 1997

Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres

Peter E. Warburton; Carol A. Cooke; Sylvie Bourassa; Omid Vafa; Beth A. Sullivan; Gail Stetten; Giorgio Gimelli; Dorothy Warburton; Chris Tyler-Smith; Kevin F. Sullivan; Guy G. Poirier; William C. Earnshaw

The trilaminar kinetochore directs the segregation of chromosomes in mitosis and meiosis. Despite its importance, the molecular architecture of this structure remains poorly understood [1]. The best known component of the kinetochore plates is CENP-C, a protein that is required for kinetochore assembly [2], but whose molecular role in kinetochore structure and function is unknown. Here we have raised for the first time monospecific antisera to CENP-A [3], a 17 kD centromere-specific histone variant that is 62% identical to the carboxy-terminal domain of histone H3 [4,5] and that resembles the yeast centromeric component CSE4 [6]. We have found by simultaneous immunofluorescence with centromere antigens of known ultrastructural location that CENP-A is concentrated in the region of the inner kinetochore plate at active centromeres. Because CENP-A was previously shown to co-purify with nucleosomes [7], our data suggest a specific nucleosomal substructure for the kinetochore. In human cells, these kinetochore-specific nucleosomes are enriched in alpha-satellite DNA [8]. However, the association of CENP-A with neocentromeres lacking detectable alpha-satellite DNA, and the lack of CENP-A association with alpha-satellite-rich inactive centromeres of dicentric chromosomes together suggest that CENP-A association with kinetochores is unlikely to be determined solely by DNA sequence recognition. We speculate that CENP-A binding could be a consequence of epigenetic tagging of mammalian centromeres.


Experimental Hematology | 2003

PARP-1, a determinant of cell survival in response to DNA damage

Véronique J. Bouchard; Michèle Rouleau; Guy G. Poirier

Poly(ADP-ribose) polymerase-1 (PARP-1) plays a primary role in the process of poly(ADP-ribosyl)ation. This posttranslational modification of nuclear proteins is activated in response to DNA damage. Having been studied for more than 30 years, PARP-1 is now known to be implicated in several crucial cellular processes: DNA replication, transcription, DNA repair, apoptosis, and genome stability. In this review, we focus on recent findings suggesting that PARP-1 participates in DNA damage signaling in cell death. Of clinical relevance is its role in cancer therapy, irradiation, and chemotherapy, all of which may cause DNA damage and overactivate PARP-1, resulting in inflammation caused by necrosis. Therefore, we will discuss how inhibition of PARP-1 may enhance the efficiency of cancer therapy.


Journal of Biological Chemistry | 2008

PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites.

Jean-François Haince; Darin McDonald; Amélie Rodrigue; Ugo Déry; Jean-Yves Masson; Michael J. Hendzel; Guy G. Poirier

Poly(ADP-ribose) polymerase 1 (PARP1) is a nuclear enzyme that is rapidly activated by DNA strand breaks and signals the presence of DNA lesions by attaching ADP-ribose units to chromatin-associated proteins. The therapeutic applications of PARP inhibitors in potentiating the killing action of ionizing radiation have been well documented and are attracting increasing interest as a cancer treatment. However, the initial kinetics underlying the recognition of multiple DNA lesions by PARP1 and how inhibition of PARP potentiates the activity of DNA-damaging agents are unknown. Here we report the spatiotemporal dynamics of PARP1 recruitment to DNA damage induced by laser microirradiation in single living cells. We provide direct evidence that PARP1 is able to accumulate at a locally induced DNA double strand break. Most importantly, we observed that the rapid accumulation of MRE11 and NBS1 at sites of DNA damage requires PARP1. By determining the kinetics of protein assembly following DNA damage, our study reveals the cooperation between PARP1 and the double strand break sensors MRE11 and NBS1 in the close vicinity of a DNA lesion. This may explain the sensitivity of cancer cells to PARP inhibitors.


Molecular and Cellular Biochemistry | 1993

Molecular and biochemical features of poly (ADP-ribose) metabolism

Dominique Lautier; Jean Lagueux; Jacques Thibodeau; Luc Ménard; Guy G. Poirier

In the past five years, poly(ADP-ribosyl)ation has developed greatly with the help of molecular biology and the improvement of biochemical techniques. In this article, we describe the physico-chemical properties of the enzymes responsible for the synthesis and degradation of poly(ADP-ribose), respectively poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase. We then discuss the possible roles of this polymer in DNA repair and replication as well as in cellular differentiation and transformation. Finally, we put forward various hypotheses in order to better define the function of this polymer found only in eucaryotes. (Mol Cell Biochem122: 171–193, 1993)

Collaboration


Dive into the Guy G. Poirier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ted M. Dawson

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Valina L. Dawson

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge