Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guy Lallement is active.

Publication


Featured researches published by Guy Lallement.


Brain Research | 1991

Effects of soman-induced seizures on different extracellular amino acid levels and on glutamate uptake in rat hippocampus

Guy Lallement; Agnès Collet; Irmine Pernot-Marino; Dominique Baubichon; Guy Blanchet

Extracellular amino acid levels in CA3 and CA1 fields of rat hippocampus, an area highly sensitive to seizures, were determined by intracranial microdialysis during seizures induced by systemic administration of soman (o-1,2,2-trimethylpropyl methylphosphonofluoridate), a potent inhibitor of acetylcholinesterase. The glutamate uptake level was determined on another series of animals in hippocampus homogenates. An early and transient increase in the extracellular glutamate level occurred in CA3 within 30 min of seizures, with correlated brief elevations of taurine, glycine and glutamine levels. The glutamate level increased early in CA1, declined and then became more sustained (after 50 min of seizures). Apparent elevations of taurine, glycine and glutamine levels in CA1 accompanied changes in glutamate concentrations. Changes of glutamate level correlated with an increase in the glutamate uptake which rapidly declined after 40 min of seizures. The role of the transient release of glutamate in CA3 and of the sustained release in CA1 in prolonged soman-induced seizures is considered. The correlation between glutamate and other amino acid release is studied.


Neuroscience Letters | 1992

Changes in hippocampal acetylcholine and glutamate extracellular levels during soman-induced seizures : influence of septal cholinoceptive cells

Guy Lallement; Michel Denoyer; Agnès Collet; Irmine Pernot-Marino; Dominique Baubichon; P. Monmaur; Guy Blanchet

The changes in extracellular acetylcholine and glutamate levels were determined, during the course of seizures induced by soman, an irreversible inhibitor of acetylcholinesterase, in the CA1 hippocampal area of rats previously injected with atropine or normal saline into septum. The marked increases observed in soman-treated animals were abolished in rats receiving atropine. These data strongly suggest that, during soman intoxication, septal cholinoceptive cells play a key role in controlling the release of acetylcholine and glutamate in hippocampus. The mechanisms underlying this phenomenon are discussed.


Journal of Physiology-paris | 1998

Medical management of organophosphate-induced seizures.

Guy Lallement; Frédéric Dorandeu; Pierre Filliat; Valérie Baille; Guy Blanchet

Recent studies concerning management of soman-induced seizures are reviewed. While drugs classically used against epilepsy in hospital appear ineffective against soman, muscarinic receptor blockers are shown to be able to prevent or stop seizures within the first 5 min after their onset. Benzodiazepine could also be considered as an emergency treatment useful during the first 10 min of seizure. Comparatively NMDA antagonists appear to be able to terminate soman-induced seizures even if the treatment is delayed after 40 min of epileptic activity. Drugs with both antimuscarinic and anti-NMDA properties may represent the most adequate pharmacological treatment to treat soman intoxication. However, the results obtained until now with these drugs must be completed in relation with their possible efficacy after i.m. administration. Propositions for future studies are reviewed.


Neuroreport | 1994

Modulation of soman-induced neuropathology with an anticonvulsant regimen.

Guy Lallement; Irmine Pernot-Marino; Dominique Baubichon; Marie-France Burckhart; Guy Blanchet

Rat hippocampus and piriform cortex were examined for pathological changes 48 hours after exposure to a convulsant dose of soman. Animals were treated with a low dose of atropine just after soman and were then injected, after 10 or 40 minutes of seizures, with both the anticonvulsant drugs NBQX and TCP. Atropine given alone counteracted the extensive neuronal loss due to soman in both areas without prevention of neuronal suffering. Comparatively, the complete anticonvulsant regimen, given before 40 minutes of seizures, totally prevented hippocampal soman-induced neuropathology. Neurones of piriform cortex were still suffering whatever the time of injection of the drugs. This emphasizes the need for a rapid and definitive anticonvulsant treatment just after soman intoxication to block the subsequent neurotoxic effect of nerve-agent exposure.


Neurotoxicology | 2002

Review of the value of huperzine as pretreatment of organophosphate poisoning.

Guy Lallement; Valérie Baille; Dominique Baubichon; Jean-Marc Collombet; Pierre Filliat; Annie Foquin; Elise Four; Catherine Masqueliez; Guy Testylier; Laura Tonduli; Frédéric Dorandeu

Today, organophosphate (OP) nerve agents are still considered as potential threats in both military or terrorism situations. OP agents are potent irreversible inhibitors of central and peripheral acetylcholinesterases. Pretreatment of OP poisoning relies on the subchronic administration of the reversible acetylcholinesterase (AChE) inhibitor pyridostigmine (PYR). Since PYR does not penetrate into the brain, it does not afford protection against seizures and subsequent neuropathology induced by an OP agent such as soman. Comparatively, huperzine (HUP) is a reversible AChE inhibitor that crosses the blood-brain barrier. HUP is presently approved for human use or is in course of clinical trials for the treatment of Alzheimers disease or myasthenia gravis. HUP is also used as supplementary drug in the USA for correction of memory impairment. Besides, HUP has also been successfully tested for pretreatment of OP poisoning. This review summarizes the therapeutical value of HUP in this field. Moreover, the modes of action of HUP underlying its efficacy against OP agents are described. Efficacy appears mainly related to both the selectivity of HUP for red cell AChE which preserves scavenger capacity of plasma butyrylcholinesterases for OP agents and to the protection conferred by HUP on cerebral AChE. Finally, recent data, showing that HUP seems to be devoid of deleterious effects in healthy subjects, are also presented. Globally, this review reinforces the therapeutical value of HUP for the optimal pretreatment of OP poisoning.


Brain Research | 1993

Neuroprotective activity of glutamate receptor antagonists against soman-induced hippocampal damage: quantification with an ω3 site ligand

Guy Lallement; Iroudayanadin S. Delamanche; Irmine Pernot-Marino; Dominique Baubichon; Michel Denoyer; Guy Blanchet

Previous investigations have indicated that the measurement of omega 3 (peripheral-type benzodiazepine) binding site densities could be of widespread applicability in the localization and quantification of neural tissue damage in the central nervous system. In the first step of the present study, the suitability of this approach for the assessment of soman-induced brain damage was validated. Autoradiographic study revealed marked increases of omega 3 site densities in several brain areas of convulsing rats 2 days after soman challenge. These increases were well-correlated with the pattern and the amplitude of neuropathological alterations due to soman and closely related to both glial reaction and macrophage invasion of the lesioned tissues. We then used this marker to assess, in mouse hippocampus, the neuroprotective activity against soman-induced brain damage of NBQX and TCP which are respective antagonists of non-NMDA and NMDA glutamatergic receptors. Injection of NBQX at 20 or 40 mg/kg 5 min prior to soman totally prevented the neuronal damage. Comparatively, TCP had neuroprotective efficacy when administered at 1 mg/kg 5 min prior to soman followed by a reinjection 1 h after. These results demonstrate that both NBQX and TCP afford a satisfactory neuroprotection against soman-induced brain damage. Since it is known that the neuropathology due to soman is closely seizure-related, the neuroprotective activities of NBQX and TCP are discussed in relation with the respective roles of non-NMDA and NMDA receptors in the onset and maintenance of soman-induced seizures.


Neuroscience Letters | 2006

Early reduction of NeuN antigenicity induced by soman poisoning in mice can be used to predict delayed neuronal degeneration in the hippocampus

Jean-Marc Collombet; Catherine Masqueliez; Elise Four; Marie-France Burckhart; Denis Bernabé; Dominique Baubichon; Guy Lallement

The neuronal nuclei (NeuN) antigen is increasingly being used as a specific marker to identify neuronal cell loss under various pathological conditions. However, recent studies pointed out that a decrease in NeuN labeling could also be due to the reduction of protein expression level or loss of antigenicity and this was not necessarily related to neuronal cell disappearance. We also investigated the presence of damaged neurons, the loss of NeuN immunoreactivity and the level of NeuN protein in the brain hippocampus of mice subjected to soman poisoning (1.2 LD50 of soman). Damaged neurons were detected using hemalun-phloxin (H&P) and Fluoro-Jade B (FJB) staining on brain sections. NeuN immunohistochemistry was also performed on adjacent brain sections and NeuN protein level quantified by Western blot analysis. One and eight days after soman exposure, about 49% of hippocampal neurons were damaged, as assessed by H&P or FJB staining. NeuN immunohistochemistry indicated that all these damaged neurons were deprived of NeuN immunoreactivity. Using Western blot analysis, we proved that loss of NeuN immunoreactivity in degenerating neurons was due to reduced NeuN antigenicity rather than a fall in protein expression level. In this study, we discuss the potential use of NeuN immunohistochemistry as a good biomarker to predict delayed neuronal degeneration in the rodent hippocampus after various brain injuries.


Brain Research | 2005

Efficacy of the ketamine-atropine combination in the delayed treatment of soman-induced status epilepticus.

Frédéric Dorandeu; Dominique Baubichon; Elise Four; Denis Bernabé; Marie-France Burckhart; Guy Lallement

Nerve agent poisoning is known to induce full-blown seizures, seizure-related brain damage (SRBD), and lethality. Effective and quick management of these seizures is critical. In conditions of delayed treatment, presently available measures are inadequate calling for optimization of therapeutic approaches. The effects of ketamine/atropine sulfate (KET/AS) combinations were thus assessed as potential valuable delayed therapy in soman-poisoned male guinea pigs. Animals received pyridostigmine (26 microg/kg, i.m.) 30 min before soman (62 microg/kg, i.m.) followed by therapy consisting of atropine methyl nitrate (4 mg/kg) 1 min later. KET was then administered i.m. at different times after the onset of seizures, starting at 30 min post-poisoning. KET was always injected with atropine sulfate, itself given at a dose that was unable to modify seizures (2 to 10 mg/kg). Different treatment schemes (dose and time of injection) were evaluated. Sub-anesthetic doses of KET (10 mg/kg) could prevent lethality and stop ongoing seizures only when administered 30 min after challenge. An extended delay before treatment (up to 2 h) called for an increase in KET dose (up to 60 mg/kg three times), thus reaching anesthetic levels but without the need of any ventilation support. KET proved effective in stopping seizures, highly reducing SRBD and allowing survival with a progressive loss of efficacy when treatment was delayed beyond 1 h post-challenge. Preliminary results suggest that association with the benzodiazepine midazolam (1 mg/kg) might be interesting when treatment is initiated 2 h after poisoning, i.e., when KET efficacy is dramatically reduced. All in all, these observations suggest that KET, in association with atropine sulfate and possibly other drugs, may be highly effective in the delayed treatment of severe soman intoxication.


Archives of Toxicology | 1997

Nerve agent poisoning in primates: antilethal, anti-epileptic and neuroprotective effects of GK-11

Guy Lallement; Didier Clarençon; Catherine Masqueliez; Dominique Baubichon; Monique Galonnier; Marie-France Burckhart; Michel Peoc'h; Jean Claude Mestries

Abstract Organophosphorus nerve agents are still in use today in warfare and as terrorism compounds. Classical emergency treatment of organophosphate poisoning includes the combined administration of a cholinesterase reactivator (an oxime), a muscarinic cholinergic receptor antagonist (atropine) and a benzodiazepine anticonvulsant (diazepam). However, recent experiments with primates have demonstrated that such treatment, even when administered immediately after organophosphate exposure, does not rapidly restore normal electroencephalographic (EEG) activity and fails to totally prevent neuronal brain damage. The objective of this study was to evaluate, in a realistic setting, the therapeutic benefit of administration of GK-11 (gacyclidine), an antiglutamatergic compound, as a complement to the available emergency therapy against organophosphate poisoning. GK-11 was injected at a dose of 0.1 mg/kg (i.v) after a 45-min latency period to heavily intoxicated (8 LD50) primates. Just after intoxication, man-equivalent doses of one autoinjector containing atropine/pralidoxime/diazepam were administered. The effects of GK-11 were examined on survival, EEG activity, signs of toxicity, recovery after challenge and central nervous system histology. The present data demonstrate that treatment with GK-11 prevents the mortality observed after early administration of classical emergency medication alone. EEG recordings and clinical observations also revealed that GK-11 prevented soman-induced seizures and motor convulsions. EEG analysis within the classical frequency bands (beta, theta, alpha, delta) demonstrated that central activity was totally restored to normal after GK-11 treatment, but remained profoundly altered in animals receiving atropine/pralidoxime/diazepam alone. GK-11 also markedly accelerated clinical recovery of soman-challenged primates. Lastly, this drug totally prevented the neuropathology observed 3 weeks after soman exposure in animals treated with classical emergency treatment alone. GK-11 represents a promising adjuvant therapy to the currently available emergency polymedication to ensure optimal management of organophosphate poisoning in man. This drug is presently being evaluated in a human clinical trial for a different neuroprotective indication.


Pharmacology, Biochemistry and Behavior | 1997

Efficacy of atropine/pralidoxime/diazepam or atropine/HI-6/prodiazepam in primates intoxicated by soman.

Guy Lallement; Didier Clarençon; Guy Brochier; Dominique Baubichon; Monique Galonnier; Guy Blanchet; Jean-Claude Mestries

We performed an experiment to characterize the toxicity of soman in cynomolgus monkeys when the organophosphorus intoxication was followed by a treatment with either the three-drug therapy atropine/pralidoxime/diazepam or the association atropine/HI-6/prodiazepam. Clinical, electrophysiological and histological approaches were combined. Our data demonstrate that the protection afforded against soman toxicity was better with the combination atropine/HI-6/prodiazepam compared to atropine/pralidoxime/diazepam. This was observed transiently in term of vigilance and respiratory function of intoxicated animals, but particularly in term of their EEG- and ECG disturbances. Moreover, compared to those treated with atropine/pralidoxine/diazepam, animals treated with atropine/ HI-6/prodiazepam recovered slightly sooner and did not exhibit prostration 2 days after intoxication although their rapidity of movements was not totally restored. The final recovery observed 3 weeks after intoxication was similar for the two groups. The value of the combination of atropine/HI-6/prodiazepam vs atropine/pralidoxime/diazepam to counteract soman toxicity was also confirmed in term of brain neuroprotection since greater lesions were observed with the second three drug treatment three weeks after intoxication.

Collaboration


Dive into the Guy Lallement's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Marc Kamenka

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mireille Lerner-Natoli

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Georges Mion

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Gérard Rondouin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean-Claude Debouzy

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

John Mikler

Defence Research and Development Canada

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge