Guy Lempérière
Joseph Fourier University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guy Lempérière.
PLOS ONE | 2013
Clelia F. Oliva; David Damiens; Marc J.B. Vreysen; Guy Lempérière; Jeremie R.L. Gilles
Male insects are expected to optimize their reproductive strategy according to the availability of sperm or other ejaculatory materials, and to the availability and reproductive status of females. Here, we investigated the reproductive strategy and sperm management of male and virgin female Aedes albopictus, a mosquito vector of chikungunya and dengue viruses. The dynamics of semen transfer to the female bursa inseminalis and spermathecae were observed. Double-mating experiments were conducted to study the effect of time lapsed or an oviposition event between two copulations on the likelihood of a female double-insemination and the use of sperm for egg fertilization; untreated fertile males and radio-sterilised males were used for this purpose. Multiple inseminations and therefore the possibility of sperm competition were limited to matings closely spaced in time. When two males consecutively mated the same female within a 40 min interval, in ca. 15% of the cases did both males sire progeny. When the intervals between the copulations were longer, all progeny over several gonotrophic cycles were offspring of the first male. The mating behavior of males was examined during a rapid sequence of copulations. Male Ae. albopictus were parceling sperm allocation over several matings; however they would also attempt to copulate with females irrespective of the available sperm supply or accessory gland secretion material. During each mating, they transferred large quantities of sperm that was not stored for egg fertilization, and they attempted to copulate with mated females with a low probability of transferring their genes to the next generation. The outcomes of this study provided in addition some essential insights with respect to the sterile insect technique (SIT) as a vector control method.
Environmental Toxicology and Chemistry | 2006
Sébastien Boyer; Jean-Philippe David; Delphine Rey; Guy Lempérière; Patrick Ravanel
The ability of mosquito larvae to tolerate toxic compounds (temephos, Bacillus thuringiensis var. israelensis, toxic vegetable leaf litter) was examined on a laboratory larval strain of Aedes aegypti L. Bioassays and detoxifying enzyme activity measurements were performed to compare tolerance/resistance capacities. The possibility of a functional plasticity of detoxifying equipment was investigated through experimental determination of the inductive effect of each xenobiotic within a given generation. In the same way, the selective effect of a toxic leaf litter was also investigated along successive generations. Results revealed that differential cytochrome P450 monooxygenase, esterase, and glutathione S-transferase activity levels correlated with the bioassay results. Both induction and selection increased larval tolerance to the xenobiotics used and increased the levels of larval detoxifying enzyme activities.
Parasites & Vectors | 2012
Louis C. Gouagna; Manpionona Rakotondranary; Sébastien Boyer; Guy Lempérière; Jean-Sébastien Dehecq; Didier Fontenille
BackgroundAnopheles arabiensis (Diptera: Culicidae) is a potential malaria vector commonly present at low altitudes in remote areas in Reunion Island. Little attention has been paid to the environmental conditions driving larval development and abundance patterns in potential habitats. Two field surveys were designed to determine whether factors that discriminate between aquatic habitats with and without An. arabiensis larvae also drive larval abundance, comparatively in man-made and naturally occurring habitats.MethodsIn an initial preliminary survey, a representative sample of aquatic habitats that would be amenable to an intensive long-term study were selected and divided into positive and negative sites based on the presence or absence of Anopheles arabiensis larvae. Subsequently, a second survey was prompted to gain a better understanding of biotic and abiotic drivers of larval abundance, comparatively in man-made and naturally occurring habitats in the two studied locations. In both surveys, weekly sampling was performed to record mosquito species composition and larval density within individual habitats, as well as in situ biological characteristics and physico-chemical properties.ResultsWhilst virtually any stagnant water body could be a potential breeding ground for An. arabiensis, habitats occupied by their immatures had different structural and biological characteristics when compared to those where larvae were absent. Larval occurrence seemed to be influenced by flow velocity, macrofauna diversity and predation pressure. Interestingly, the relative abundance of larvae in man-made habitats (average: 0.55 larvae per dip, 95%CI [0.3–0.7]) was significantly lower than that recorded in naturally occurring ones (0.74, 95%CI [0.5–0.8]). Such differences may be accounted for in part by varying pressures that could be linked to a specific habitat.ConclusionsIf the larval ecology of An. arabiensis is in general very complex and factors affecting breeding site productivity sometimes not easy to highlight, our results, however, highlight lower populations of An. arabiensis immatures compared to those reported in comparable studies conducted in the African continent. Overall, this low larval abundance, resulting from both abiotic and biotic factors, suggests that vector control measures targeting larval habitats are likely to be successful in Reunion, but these could be better implemented by taking environmental variability into account.
Malaria Journal | 2011
Clelia F. Oliva; Mark Q. Benedict; Guy Lempérière; Jeremie R.L. Gilles
BackgroundSeparating males and females at the early adult stage did not ensure the virginity of females of Anopheles arabiensis (Dongola laboratory strain), whereas two years earlier this method had been successful. In most mosquito species, newly emerged males and females are not able to mate successfully. For anopheline species, a period of 24 h post-emergence is generally required for the completion of sexual maturation, which in males includes a 180° rotation of the genitalia. In this study, the possibility of an unusually shortened sexual maturity period in the laboratory-reared colony was investigated.MethodsThe effect of two different sex-separation methods on the virginity of females was tested: females separated as pupae or less than 16 h post-emergence were mated with males subjected to various doses of radiation. T-tests were performed to compare the two sex-separation methods. The rate of genitalia rotation was compared for laboratory-reared and wild males collected as pupae in Dongola, Sudan, and analysed by Z-tests. Spermatheca dissections were performed on females mated with laboratory-reared males to determine their insemination status.ResultsWhen the sex-separation was performed when adults were less than 16 h post-emergence, expected sterility was never reached for females mated with radio-sterilized males. Expected sterility was accomplished only when sexes were separated at the pupal stage. Observation of genitalia rotation showed that some males from the laboratory strain Dongola were able to successfully mate only 11 h after emergence and 42% of the males had already completed rotation. A small proportion of the same age females were inseminated. Wild males showed a much slower genitalia rotation rate. At 17 h post-emergence, 96% of the laboratory-reared males had completed genitalia rotation whereas none of the wild males had.ConclusionThis colony has been cultured in the laboratory for over one hundred generations, and now has accelerated sexual maturation when compared with the wild strain. This outcome demonstrates the kinds of selection that can be expected during insect colonization and maintenance, particularly when generations are non-overlapping and similar-age males must compete for mates.
Parasites & Vectors | 2011
Louis C. Gouagna; Jean-Sébastien Dehecq; Romain Girod; Sébastien Boyer; Guy Lempérière; Didier Fontenille
BackgroundAn often confounding facet of the dynamics of malaria vectors is the aquatic larval habitat availability and suitable conditions under which they can thrive. Here, we investigated the impact of environmental factors on the temporal and spatial distribution of larval habitats of Anophelesarabiensis in different locations on La Reunion Island.MethodsA retrospective examination was made from archival data which provided the complete enumeration of An. arabiensis breeding habitats in three distinct geographic zones - extending North-east, West and South of the island over 14 years, from January 1996 to December 2009. Data on the occurrence and the number of active larval habitats at each of a total of 4376 adjacent ellipsoid grid cells (216,506 square meters each) were used (1) to provide the geographic extent of breeding site availability from year to year and (2) to analyze associations with prevailing environmental factors, habitat types, and locations.ResultsAnopheles arabiensis utilized a spectrum of man-made and natural aquatic habitats, most of which were concentrated primarily in the rock pools located in ravines and river fringes, and also in the large littoral marshes and within the irrigated agricultural zones. The numbers of breeding site per sampling grid differed significantly in different parts of the island. In contrast to an originally more widespread distribution across the island in the 1950s, detailed geographic analyses of the data obtained in the period extending from 1996-2009 showed an intriguing clustered distribution of active breeding sites in three discontinuous geographic zones, in which aquatic habitats availability fluctuates with the season and year. Seasonality in the prevalence of anopheles breeding sites suggests significant responsiveness to climatic factors.ConclusionsThe observed retreat of An. arabiensis distribution range to lower altitudinal zones (< 400 m) and the upward shift in the most remote littoral areas in the northeast and southwest regions suggest the possible influence of biogeographic factors, changes in land use and control operations. The results of this study would allow for a more rational implementation of control strategies across the island.
Malaria Journal | 2007
Julien Sérandour; Jacky Girel; Sébastien Boyer; Patrick Ravanel; Guy Lempérière; Muriel Raveton
BackgroundMalaria was endemic in the Rhône-Alpes area of eastern France in the 19th century and life expectancy was particularly shortened in Alpine valleys. This study was designed to determine how the disease affected people in the area and to identify the factors influencing malaria transmission.MethodsDemographic data of the 19th century were collected from death registers of eight villages of the flood-plain of the river Isère. Correlations were performed between these demographic data and reconstructed meteorological data. Archive documents from medical practitioners gave information on symptoms of ill people. Engineer reports provided information on the hydraulic project developments in the Isère valley.ResultsDescription of fevers was highly suggestive of endemic malaria transmission in the parishes neighbouring the river Isère. The current status of anopheline mosquitoes in the area supports this hypothesis. Mean temperature and precipitation were poorly correlated with demographic data, whereas the chronology of hydrological events correlated with fluctuations in death rates in the parishes.ConclusionNowadays, most of the river development projects involve the creation of wet areas, enabling controlled flooding events. Flood-flow risk and the re-emergence of vector-borne diseases would probably be influenced by the climate change. The message is not to forget that human disturbance of any functioning hydrosystem has often been linked to malaria transmission in the past.
Insect Conservation and Diversity | 2010
Guy Lempérière; Damien Marage
Abstract. 1. Dead wood plays a key role in the functioning of forest ecosystems and is appropriate for conservation purposes and for maintaining biodiversity. In this context, in mixed silver fir ancient forests of the southern French Alps, the respective influence of management status and decay stages were assessed together with assemblages of saproxylic invertebrates.
PLOS ONE | 2008
Julien Sérandour; Stéphane Reynaud; John C. Willison; Joëlle Patouraux; Thierry Gaude; Patrick Ravanel; Guy Lempérière; Muriel Raveton
Plants produce semio-chemicals that directly influence insect attraction and/or repulsion. Generally, this attraction is closely associated with herbivory and has been studied mainly under atmospheric conditions. On the other hand, the relationship between aquatic plants and insects has been little studied. To determine whether the roots of aquatic macrophytes release attractive chemical mixtures into the water, we studied the behaviour of mosquito larvae using olfactory experiments with root exudates. After testing the attraction on Culex and Aedes mosquito larvae, we chose to work with Coquillettidia species, which have a complex behaviour in nature and need to be attached to plant roots in order to obtain oxygen. This relationship is non-destructive and can be described as commensal behaviour. Commonly found compounds seemed to be involved in insect attraction since root exudates from different plants were all attractive. Moreover, chemical analysis allowed us to identify a certain number of commonly found, highly water-soluble, low-molecular-weight compounds, several of which (glycerol, uracil, thymine, uridine, thymidine) were able to induce attraction when tested individually but at concentrations substantially higher than those found in nature. However, our principal findings demonstrated that these compounds appeared to act synergistically, since a mixture of these five compounds attracted larvae at natural concentrations (0.7 nM glycerol, <0.5 nM uracil, 0.6 nM thymine, 2.8 nM uridine, 86 nM thymidine), much lower than those found for each compound tested individually. These results provide strong evidence that a mixture of polyols (glycerol), pyrimidines (uracil, thymine), and nucleosides (uridine, thymidine) functions as an efficient attractive signal in nature for Coquillettidia larvae. We therefore show for the first time, that such commonly found compounds may play an important role in plant-insect relationships in aquatic eco-systems.
Revue Forestière Française [Rev. For. Fr.], ISSN 0035-2829, 2017, 69, 2, p. 111-120 | 2017
Damien Marage; Guy Lempérière; Christophe Voreux
Le groupe d’especes Formica rufa est considere comme un bon indicateur de l’etat de conservation des forets de montagne. Le protocole standardise pour le suivi des peuplements myrmecologiques mis au point par Torossian en 1982 a ete repris trente ans apres sur le meme site avec des mesures sur le peuplement myrmecologique d’une foret de montagne pyreneenne. Les resultats indiquent que la densite des domes a fortement chute. Nous avancons que la densite des pistes de ski, les oppositions de versants et la nature des peuplements forestiers pourraient expliquer ces variations. Compte tenu de la duree de vie des populations de Formica rufa, cette etude souligne l’importance de telles analyses diachroniques pour le suivi a long terme des ecosystemes forestiers.
Annals of Forest Science | 2005
Damien Marage; Guy Lempérière