Guy Lippens
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guy Lippens.
Journal of Biomolecular NMR | 1995
Guy Lippens; C. Dhalluin; Jean-Michel Wieruszeski
SummaryA simple modification to the WATERGATE water suppression scheme [Piotto, M., Saudek, V. and Sklenář, V. (1992) J. Biomol. NMR, 2, 661–665] is proposed. Radiation damping is used as an active element during the mixing time of a NOESY experiment, in order to obtain a reproducable state of the water magnetization at the end of the mixing time. Through the use of a water flip-back pulse and a gradient-tailored excitation scheme, we obtain both an excellent water suppression and a water magnetization close to equilibrium at the beginning of the acquisition time. We show experimentally that this modification results in a 20% gain in intensity for all signals when using a relaxation delay of 1.5 s, and also that avoiding a semisaturated state for the water magnetization allows the amide protons as well as other proton resonances to relax to equilibrium with their proper relaxation time.
Journal of Biological Chemistry | 2001
René Wintjens; Jean-Michel Wieruszeski; Hervé Drobecq; Pierre Rousselot-Pailley; Luc Buée; Guy Lippens; Isabelle Landrieu
The recent crystal structure of Pin1 protein bound to a doubly phosphorylated peptide from the C-terminal domain of RNA polymerase II revealed that binding interactions between Pin1 and its substrate take place through its Trp-Trp (WW) domain at the level of the loop Ser11-Arg12 and the aromatic pair Tyr18-Trp29, and showed a transconformation for both pSer-Pro peptide bonds. However, the orientation of the ligand in the aromatic recognition groove still could be sequence-specific, as previously observed in SH3 domains complexed by peptide ligands or for different class of WW domains (Zarrinpar, A., and Lim, W. A. (2000) Nat. Struct. Biol. 7, 611–613). Because the bound peptide conformation could also differ as observed for peptide ligands bound to the 14-3-3 domain, ligand orientation and conformation for two other biologically relevant monophosphate substrates, one derived from the Cdc25 phosphatase ofXenopus laevis (EQPLpTPVTDL) and another from the human tau protein (KVSVVRpTPPKSPS) in complex with the WW domain are here studied by solution NMR methods. First, the proton resonance perturbations on the WW domain upon complexation with both peptide ligands were determined to be essentially located in the positively charged β-hairpin Ser11-Gly15 and around the aromatic Trp29. Dissociation equilibrium constants of 117 and 230 μm for Cdc25 and tau peptides, respectively, were found. Several intermolecular nuclear Overhauser effects between WW domain and substrates were obtained from a ligand-saturated solution and were used to determine the structures of the complexes in solution. We found a similar N to C orientation as the one observed in the crystal complex structure of Pin1 and a trans conformation for the pThr-Pro peptidic bond in both peptide ligands, thereby indicating a unique binding scheme for the Pin1 WW domain to its multiple substrates.
Biochemical Pharmacology | 2003
Malika Hamdane; Patrice Delobel; Anne-Véronique Sambo; Caroline Smet; Séverine Bégard; Anne Violleau; Isabelle Landrieu; André Delacourte; Guy Lippens; Stéphane Flament; Luc Buée
Neuronal death is a process which may be either physiological or pathological. Apoptosis and necrosis are two of these processes which are particularly studied. However, in neurodegenerative disorders, some neurons escape to these types of death and agonize in a process referred to as neurofibrillary degeneration. Neurofibrillary degeneration is characterized by the intraneuronal aggregation of abnormally phosphorylated microtubule-associated Tau proteins. A number of studies have reported a reactivation of the cell cycle in the neurofibrillary degeneration process. This reactivation of the cell cycle is reminiscent of the initiation of apoptosis in post-mitotic cells where G1/S markers including cyclin D1 and cdk4/6, are commonly found. However, in neurons exhibiting neurofibrillary degeneration, both G1/S and G2/M markers are found suggesting that they do not follow the classical apoptosis and an aberrant cell cycle occurs. This aberrant response leading to neurofibrillary degeneration may be triggered by the sequential combination of three partners: the complex Cdk5/p25 induces both apoptosis and the abnormal mitotic Tau phosphorylation. These mitotic epitopes may allow for the nuclear depletion of Pin1. This latter may be responsible for escaping classical apoptosis in a subset of neurons. Since neurofibrillary degeneration is likely to be a third way to die, molecular mechanisms leading to changes in Tau phosphorylation including activation of kinases such as cdk5 or other regulators such as Pin1 could be important drug targets as they are possibly involved in early stages of neurodegeneration.
Tetrahedron | 1996
Iuliana Pop; Christophe F. Dhalluin; Benoit Deprez; Patricia C. Melnyk; Guy Lippens; AndréL. Tartar
Abstract MAS NMR technique with standard equipment was used to characterize the intermediate products in a three step reaction scheme leading to disubstituted olefins on solid support. The step-by-step analysis of the reaction presented here demonstrates that the goal of reaction characterization and optimization in situ can be obtained in an entirely satisfying manner using conventional MAS NMR. Some of the experimental parameters that should be taken into consideration to obtain workable spectra are examined.
Biochemical Journal | 2004
Besma Jouirou; Amor Mosbah; Violeta Visan; Stephan Grissmer; Sarrah M'Barek; Ziad Fajloun; Jurphaas Van Rietschoten; Christiane Devaux; Hervé Rochat; Guy Lippens; Mohamed El Ayeb; Michel De Waard; Kamel Mabrouk; Jean-Marc Sabatier
CoTX1 (cobatoxin 1) is a 32-residue toxin with three disulphide bridges that has been isolated from the venom of the Mexican scorpion Centruroides noxius Hoffmann. Here we report the chemical synthesis, disulphide bridge organization, 3-D (three-dimensional) solution structure determination, pharmacology on K+ channel subtypes (voltage-gated and Ca2+-activated) and docking-simulation experiments. An enzyme-based cleavage of the synthetic folded/oxidized CoTX1 indicated half-cystine pairs between Cys3-Cys22, Cys8-Cys27 and Cys12-Cys29. The 3-D structure of CoTX1 (solved by 1H-NMR) showed that it folds according to the common alpha/beta scaffold of scorpion toxins. In vivo, CoTX1 was lethal after intracerebroventricular injection to mice (LD50 value of 0.5 microg/mouse). In vitro, CoTX1 tested on cells expressing various voltage-gated or Ca2+-activated (IKCa1) K+ channels showed potent inhibition of currents from rat K(v)1.2 ( K(d) value of 27 nM). CoTX1 also weakly competed with 125I-labelled apamin for binding to SKCa channels (small-conductance Ca2+-activated K+ channels) on rat brain synaptosomes (IC50 value of 7.2 microM). The 3-D structure of CoTX1 was used in docking experiments which suggests a key role of Arg6 or Lys10, Arg14, Arg18, Lys21 (dyad), Ile23, Asn24, Lys28 and Tyr30 (dyad) residues of CoTX1 in its interaction with the rat K(v)1.2 channel. In addition, a [Pro7,Gln9]-CoTX1 analogue (ACoTX1) was synthesized. The two residue replacements were selected aiming to restore the RPCQ motif in order to increase peptide affinity towards SKCa channels, and to alter the CoTX1 dipole moment such that it is expected to decrease peptide activity on K(v) channels. Unexpectedly, ACoTX1 exhibited an activity similar to that of CoTX1 towards SKCa channels, while it was markedly more potent on IKCa1 and several voltage-gated K+ channels.
FEBS Letters | 2005
Caroline Smet; Jean-Michel Wieruszeski; Luc Buée; Isabelle Landrieu; Guy Lippens
The WW module of the peptidyl‐prolyl cis/trans isomerase Pin1 targets specifically phosphorylated proteins involved in the cell cycle through the recognition of phospho‐Thr(Ser)‐Pro motifs. When the microtubule‐associated Tau protein becomes hyperphosphorylated, it equally becomes a substrate for Pin1, with two recognition sites described around the phosphorylated Thr212 and Thr231. The Pin1 WW domain binds both sites with moderate affinity, but only the Thr212–Pro213 bond is isomerized by the catalytic domain of Pin1. We show here that, in a peptide carrying a single recognition site, the WW module increases significantly the enzymatic isomerase activity of Pin1. However, with addition of a second recognition motif, the affinity of both the WW and catalytic domain for the substrate increases, but the isomerization efficacy decreases. We therefore conclude that the WW domain can act as a negative regulator of enzymatic activity when multiple phosphorylation is present, thereby suggesting a subtle mechanism of its functional regulation.
Chemistry: A European Journal | 2002
José Martins; Frédéric A. G. Mercier; Alexander Vandervelden; Monique Biesemans; Jean-Michel Wieruszeski; Eberhard Humpfer; Rudolph Willem; Guy Lippens
The structural characterization of organotin compounds that are grafted onto insoluble cross-linked polymers has necessarily been limited to elemental analysis, infrared spectroscopy, and in a few instances, solid-state NMR spectroscopy. This important bottleneck in the development of such grafted systems has been addressed by using high-resolution magic angle spinning (hr-MAS) NMR spectroscopy. The great potential of this technique is demonstrated through the structural characterization of diphenylbutyl-(3,4) and dichlorobutylstannanes (5,6), grafted onto divinylbenzene cross-linked polystyrene by means of a suitable linker (1, 2). First, conditions suitable for the application of hr-MAS NMR spectroscopy were identified by characterizing the (1)H resonance line widths of the grafted organotin moiety following swelling of the functionalized beads in eight representative solvents. The presence of clearly identifiable tin coupling patterns in both the 1D (13)C and 2D (1)H-(13)C HSQC spectra, and the incorporation of (119)Sn chemical shift and connectivity information from hr-MAS 1D (119)Sn and 2D (1)H-(119)Sn HMQC spectra, provide an unprecedented level of characterization of grafted organotins directly at the solid/liquid interface. In addition, the use of hr-MAS (119)Sn NMR for reaction monitoring, impurity detection, and quantification and assessment of the extent of coordination reveals its promise as a novel tool for the investigation of polymer-grafted organotin compounds. The approach described here should be sufficiently general for extension to a variety of other nuclei of interest in polymer-supported organometallic chemistry.
Journal of Molecular Biology | 2002
Isabelle Landrieu; Jean-Michel Wieruszeski; René Wintjens; Dirk Inzé; Guy Lippens
The 119-amino acid residue prolyl cis/trans isomerase from Arabidopsis thaliana (PIN1At) is similar to the catalytic domain of the human hPIN1. However, PIN1At lacks the N-terminal WW domain that appears to be essential for the hPIN1 function. Here, the solution structure of PIN1At was determined by three-dimensional nuclear magnetic resonance spectroscopy. The PIN1At fold could be superimposed on that of the catalytic domain of hPIN1 and had a 19 residue flexible loop located between strand beta1 and helix alpha1. The dynamical features of this beta1/alpha1-loop, which are characteristic for a region involved in protein-protein interactions, led to exchange broadening in the NMR spectra. When sodium sulfate salt was added to the protein sample, the beta1/alpha1 loop was stabilized and, hence, a complete backbone resonance assignment was obtained. Previously, with a phospho-Cdc25 peptide as substrate, PIN1At had been shown to catalyze the phosphoserine/phosphothreonine prolyl cis/trans isomerization specifically. To map the catalytic site of PIN1At, the phospho-Cdc25 peptide or sodium sulfate salt was added in excess to the protein and chemical shift changes in the backbone amide protons were monitored in the (1)H(N)-(15)N heteronuclear single quantum coherence spectrum. The peptide caused perturbations in the loops between helix alpha4 and strand beta3, between strands beta3 and beta4, in the alpha3 helix, and in the beta1/alpha1 loop. The amide groups of the residues Arg21 and Arg22 showed large chemical shift perturbations upon phospho-Cdc25 peptide or sulfate addition. We conclude that this basic cluster formed by Arg21 and Arg22, both located in the beta1/alpha1 loop, is homologous to that found in the hPIN1 crystal structure (Arg68 and Arg69), which also is involved in sulfate ion binding. We showed that the sulfate group competed for the interaction between PIN1At and the phospho-Cdc25 peptide. In the absence of the WW domain, three hydrophobic residues (Ile33, Ile34, and Leu35) located in the long flexible loop and specific for the plant PIN-type peptidyl prolyl cis/trans isomerases (PPIases) could be an additional interaction site in PIN1At. However, phospho-peptide addition did not affect the resonances of these residues significantly. Electrostatic potential calculations revealed a negatively charged area not found in hPIN1 on the PIN1At molecular surface, which corresponds to the surface shielded by the WW domain in hPIN1. Based on our experimental results and the molecular specificities of the PIN1At enzyme, functional implications of the lack of WW domains in this plant PIN-type PPIase will be discussed.
Combinatorial Chemistry & High Throughput Screening | 2001
Guy Lippens; Ralf Warrass; Jean-Michel Wieruszeski; Pierre Rousselot-Pailley; G. Chessari
Solid phase organic chemistry coupled with combinatorial methods promises to increase dramatically the diversity and number of small molecules available for medical and biological applications. However, optimizing the reaction conditions can be a time consuming step, especially since analytical tools to monitor reaction progress and detect impurities for solid phase chemistry are less developed than for solution chemistry. The use of high resolution magic angle spinning (HRMAS) NMR is described here as such an analytical tool. Whereas initial applications of molecular identification using deuterated organic solvents to swell the resins presented a significant gain in time over the cleave-and-analysis methods, the introduction of a differential diffusion filter has made immediate recording of spectra possible without any sample treatment. The applications of HRMAS NMR to different solid supports that are used in combinatorial chemistry will be described in terms of rapidity, robustness and sensitivity.
Molecular Physics | 1993
Guy Lippens; D. Van Belle; J. Jeener
The T 1 relaxation time of the proton Zeeman magnetization is calculated in a molecular dynamics simulation of two different water models, the single point charge (SPC) model and the polarizable SPC model. First, the possibility to treat such a system as an assembly of independent protons neglecting spin correlations of the two proton spins on the same water molecule is theoretically justified. The relaxation times are then calculated for both water models. This provides a parameter that can directly be compared with the experimental value, and its decomposition in intra- and intermolecular parts gives an indication to where those water models can be improved.