Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guy M. Lenk is active.

Publication


Featured researches published by Guy M. Lenk.


Nature Genetics | 2008

The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm

Anna Helgadottir; Gudmar Thorleifsson; Kristinn P. Magnusson; Solveig Gretarsdottir; Valgerdur Steinthorsdottir; Andrei Manolescu; Gregory T. Jones; Gabriel J.E. Rinkel; Jan D. Blankensteijn; Antti Ronkainen; Juha Jääskeläinen; Yoshiki Kyo; Guy M. Lenk; Natzi Sakalihasan; Konstantinos Kostulas; Anders Gottsäter; Andrea Flex; Hreinn Stefansson; Torben Hansen; Gitte Andersen; Shantel Weinsheimer; Knut Borch-Johnsen; Torben Jørgensen; Svati H. Shah; Arshed A. Quyyumi; Christopher B. Granger; Muredach P. Reilly; Harland Austin; Allan I. Levey; Viola Vaccarino

Recently, two common sequence variants on 9p21, tagged by rs10757278-G and rs10811661-T, were reported to be associated with coronary artery disease (CAD) and type 2 diabetes (T2D), respectively. We proceeded to further investigate the contributions of these variants to arterial diseases and T2D. Here we report that rs10757278-G is associated with, in addition to CAD, abdominal aortic aneurysm (AAA; odds ratio (OR) = 1.31, P = 1.2 × 10−12) and intracranial aneurysm (OR = 1.29, P = 2.5 × 10−6), but not with T2D. This variant is the first to be described that affects the risk of AAA and intracranial aneurysm in many populations. The association of rs10811661-T to T2D replicates in our samples, but the variant does not associate with any of the five arterial diseases examined. These findings extend our insight into the role of the sequence variant tagged by rs10757278-G and show that it is not confined to atherosclerotic diseases.


Human Molecular Genetics | 2009

Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2

Cole J. Ferguson; Guy M. Lenk; Miriam H. Meisler

Mutations affecting the conversion of PI3P to the signaling lipid PI(3,5)P2 result in spongiform degeneration of mouse brain and are associated with the human disorders Charcot–Marie–Tooth disease and amyotrophic lateral sclerosis (ALS). We now report accumulation of the proteins LC3-II, p62 and LAMP-2 in neurons and astrocytes of mice with mutations in two components of the PI(3,5)P2 regulatory complex, Fig4 and Vac14. Cytoplasmic inclusion bodies containing p62 and ubiquinated proteins are present in regions of the mutant brain that undergo degeneration. Co-localization of p62 and LAMP-2 in affected cells indicates that formation or recycling of the autolysosome is impaired. These results establish a role for PI(3,5)P2 in autophagy in the mammalian central nervous system (CNS) and demonstrate that mutations affecting PI(3,5)P2 can contribute to inclusion body disease.


BMC Genomics | 2007

Whole genome expression profiling reveals a significant role for immune function in human abdominal aortic aneurysms.

Guy M. Lenk; Gerard Tromp; Shantel Weinsheimer; Zoran Gatalica; Ramon Berguer; Helena Kuivaniemi

BackgroundAbdominal aortic aneurysms are a common disorder with an incompletely understood etiology. We used Illumina and Affymetrix microarray platforms to generate global gene expression profiles for both aneurysmal (AAA) and non-aneurysmal abdominal aorta, and identified genes that were significantly differentially expressed between cases and controls.ResultsAffymetrix and Illumina arrays included 18,057 genes in common; 11,542 (64%) of these genes were considered to be expressed in either aneurysmal or normal abdominal aorta. There were 3,274 differentially expressed genes with a false discovery rate (FDR) ≤ 0.05. Many of these genes were not previously known to be involved in AAA, including SOST and RUNX3, which were confirmed using Q-RT-PCR (Pearson correlation coefficient for microarray and Q-RT-PCR data = 0.89; p-values for differences in expression between AAA and controls for SOST: 4.87 × 10-4 and for RUNX3: 4.33 × 10-5). Analysis of biological pathways, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), indicated extreme overrepresentation of immune related categories. The enriched categories included the GO category Immune Response (GO:0006955; FDR = 2.1 × 10-14), and the KEGG pathways natural killer cell mediated cytotoxicity (hsa04650; FDR = 5.9 × 10-6) and leukocyte transendothelial migration (hsa04670; FDR = 1.1 × 10-5).ConclusionPrevious studies have provided evidence for the involvement of the immune system in AAA. The current expression analysis extends these findings by demonstrating broad coordinate gene expression in immunological pathways. A large number of genes involved in immune function were differentially expressed in AAA, and the pathway analysis gave these results a biological context. The data provide valuable insight for future studies to dissect the pathogenesis of human AAA. These pathways might also be used as targets for the development of therapeutic agents for AAA.


Proceedings of the National Academy of Sciences of the United States of America | 2012

In vivo, Pikfyve generates PI(3,5)P2, which serves as both a signaling lipid and the major precursor for PI5P

Sergey N. Zolov; Dave Bridges; Yanling Zhang; Wei Wei Lee; Ellen Riehle; Rakesh Verma; Guy M. Lenk; Kimber Converso-Baran; Thomas Weide; Roger L. Albin; Alan R. Saltiel; Miriam H. Meisler; Mark W. Russell; Lois S. Weisman

Mutations that cause defects in levels of the signaling lipid phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] lead to profound neurodegeneration in mice. Moreover, mutations in human FIG4 predicted to lower PI(3,5)P2 levels underlie Charcot–Marie–Tooth type 4J neuropathy and are present in selected cases of amyotrophic lateral sclerosis. In yeast and mammals, PI(3,5)P2 is generated by a protein complex that includes the lipid kinase Fab1/Pikfyve, the scaffolding protein Vac14, and the lipid phosphatase Fig4. Fibroblasts cultured from Vac14−/− and Fig4−/− mouse mutants have a 50% reduction in the levels of PI(3,5)P2, suggesting that there may be PIKfyve-independent pathways that generate this lipid. Here, we characterize a Pikfyve gene-trap mouse (Pikfyveβ-geo/β-geo), a hypomorph with ∼10% of the normal level of Pikfyve protein. shRNA silencing of the residual Pikfyve transcript in fibroblasts demonstrated that Pikfyve is required to generate all of the PI(3,5)P2 pool. Surprisingly, Pikfyve also is responsible for nearly all of the phosphatidylinositol-5-phosphate (PI5P) pool. We show that PI5P is generated directly from PI(3,5)P2, likely via 3′-phosphatase activity. Analysis of tissues from the Pikfyveβ-geo/β-geo mouse mutants reveals that Pikfyve is critical in neural tissues, heart, lung, kidney, thymus, and spleen. Thus, PI(3,5)P2 and PI5P have major roles in multiple organs. Understanding the regulation of these lipids may provide insights into therapies for multiple diseases.


Developmental Cell | 2013

A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis.

Mohammad Samie; Xiang Wang; Xiaoli Zhang; Andrew Goschka; Xinran Li; Xiping Cheng; Evan Gregg; Marlene Azar; Yue Zhuo; Abigail G. Garrity; Qiong Gao; Susan A. Slaugenhaupt; Jim Pickel; Sergey N. Zolov; Lois S. Weisman; Guy M. Lenk; Steve Titus; Marthe Bryant-Genevier; Noel Southall; Marugan Juan; Marc Ferrer; Haoxing Xu

Phagocytosis of large extracellular particles such as apoptotic bodies requires delivery of the intracellular endosomal and lysosomal membranes to form plasmalemmal pseudopods. Here, we identified mucolipin TRP channel 1 (TRPML1) as the key lysosomal Ca2+ channel regulating focal exocytosis and phagosome biogenesis. Both particle ingestion and lysosomal exocytosis are inhibited by synthetic TRPML1 blockers and are defective in macrophages isolated from TRPML1 knockout mice. Furthermore, TRPML1 overexpression and TRPML1 agonists facilitate both lysosomal exocytosis and particle uptake. Using time-lapse confocal imaging and direct patch clamping of phagosomal membranes, we found that particle binding induces lysosomal PI(3,5)P2 elevation to trigger TRPML1-mediated lysosomal Ca2+ release specifically at the site of uptake, rapidly delivering TRPML1-resident lysosomal membranes to nascent phagosomes via lysosomal exocytosis. Thus phagocytic ingestion of large particles activates a phosphoinositide- and Ca2+-dependent exocytosis pathway to provide membranes necessary for pseudopod extension, leading to clearance of senescent and apoptotic cells in vivo.


Human Heredity | 2007

Candidate-Gene Association Study of Mothers with Pre-Eclampsia, and Their Infants, Analyzing 775 SNPs in 190 Genes

Katrina A.B. Goddard; Gerard Tromp; Roberto Romero; Jane M. Olson; Qing Lu; Zhiying Xu; Neeta Parimi; Jyh Kae Nien; Ricardo Gomez; Ernesto Behnke; Margarita Solari; Jimmy Espinoza; Joaquin Santolaya; Tinnakorn Chaiworapongsa; Guy M. Lenk; Kimberly Volkenant; Madan Kumar Anant; Benjamin A. Salisbury; Janet L Carr; Min Soeb Lee; Gerald F. Vovis; Helena Kuivaniemi

Pre-eclampsia (PE) affects 5–7% of pregnancies in the US, and is a leading cause of maternal death and perinatal morbidity and mortality worldwide. To identify genes with a role in PE, we conducted a large-scale association study evaluating 775 SNPs in 190 candidate genes selected for a potential role in obstetrical complications. SNP discovery was performed by DNA sequencing, and genotyping was carried out in a high-throughput facility using the MassARRAYTM System. Women with PE (n = 394) and their offspring (n = 324) were compared with control women (n = 602) and their offspring (n = 631) from the same hospital-based population. Haplotypes were estimated for each gene using the EM algorithm, and empirical p values were obtained for a logistic regression-based score test, adjusted for significant covariates. An interaction model between maternal and offspring genotypes was also evaluated. The most significant findings for association with PE were COL1A1 (p = 0.0011) and IL1A (p = 0.0014) for the maternal genotype, and PLAUR (p = 0.0008) for the offspring genotype. Common candidate genes for PE, including MTHFR and NOS3, were not significantly associated with PE. For the interaction model, SNPs within IGF1 (p = 0.0035) and IL4R (p = 0.0036) gave the most significant results. This study is one of the most comprehensive genetic association studies of PE to date, including an evaluation of offspring genotypes that have rarely been considered in previous studies. Although we did not identify statistically significant evidence of association for any of the candidate loci evaluated here after adjusting for multiple testing using the false discovery rate, additional compelling evidence exists, including multiple SNPs with nominally significant p values in COL1A1 and the IL1A region, and previous reports of association for IL1A, to support continued interest in these genes as candidates for PE. Identification of the genetic regulators of PE may have broader implications, since women with PE are at increased risk of death from cardiovascular diseases later in life.


PLOS ONE | 2013

Altered Cardiac Electrophysiology and SUDEP in a Model of Dravet Syndrome

David S. Auerbach; Julie M. Jones; Brittany C. Clawson; James Offord; Guy M. Lenk; Ikuo Ogiwara; Kazuhiro Yamakawa; Miriam H. Meisler; Jack M. Parent; Lori L. Isom

Objective Dravet syndrome is a severe form of intractable pediatric epilepsy with a high incidence of SUDEP: Sudden Unexpected Death in epilepsy. Cardiac arrhythmias are a proposed cause for some cases of SUDEP, yet the susceptibility and potential mechanism of arrhythmogenesis in Dravet syndrome remain unknown. The majority of Dravet syndrome patients have de novo mutations in SCN1A, resulting in haploinsufficiency. We propose that, in addition to neuronal hyperexcitability, SCN1A haploinsufficiency alters cardiac electrical function and produces arrhythmias, providing a potential mechanism for SUDEP. Methods Postnatal day 15-21 heterozygous SCN1A-R1407X knock-in mice, expressing a human Dravet syndrome mutation, were used to investigate a possible cardiac phenotype. A combination of single cell electrophysiology and in vivo electrocardiogram (ECG) recordings were performed. Results We observed a 2-fold increase in both transient and persistent Na+ current density in isolated Dravet syndrome ventricular myocytes that resulted from increased activity of a tetrodotoxin-resistant Na+ current, likely Nav1.5. Dravet syndrome myocytes exhibited increased excitability, action potential duration prolongation, and triggered activity. Continuous radiotelemetric ECG recordings showed QT prolongation, ventricular ectopic foci, idioventricular rhythms, beat-to-beat variability, ventricular fibrillation, and focal bradycardia. Spontaneous deaths were recorded in 2 DS mice, and a third became moribund and required euthanasia. Interpretation These data from single cell and whole animal experiments suggest that altered cardiac electrical function in Dravet syndrome may contribute to the susceptibility for arrhythmogenesis and SUDEP. These mechanistic insights may lead to critical risk assessment and intervention in human patients.


PLOS Genetics | 2011

Pathogenic Mechanism of the FIG4 Mutation Responsible for Charcot-Marie-Tooth Disease CMT4J

Guy M. Lenk; Cole J. Ferguson; Clement Y. Chow; Natsuko Jin; Julie M. Jones; Adrienne E. Grant; Sergey N. Zolov; Jesse J. Winters; Roman J. Giger; James J. Dowling; Lois S. Weisman; Miriam H. Meisler

CMT4J is a severe form of Charcot-Marie-Tooth neuropathy caused by mutation of the phosphoinositide phosphatase FIG4/SAC3. Affected individuals are compound heterozygotes carrying the missense allele FIG4-I41T in combination with a null allele. Analysis using the yeast two-hybrid system demonstrated that the I41T mutation impairs interaction of FIG4 with the scaffold protein VAC14. The critical role of this interaction was confirmed by the demonstration of loss of FIG4 protein in VAC14 null mice. We developed a mouse model of CMT4J by expressing a Fig4-I41T cDNA transgene on the Fig4 null background. Expression of the mutant transcript at a level 5× higher than endogenous Fig4 completely rescued lethality, whereas 2× expression gave only partial rescue, providing a model of the human disease. The level of FIG4-I41T protein in transgenic tissues is only 2% of that predicted by the transcript level, as a consequence of the protein instability caused by impaired interaction of the mutant protein with VAC14. Analysis of patient fibroblasts demonstrated a comparably low level of mutant I41T protein. The abundance of FIG4-I41T protein in cultured cells is increased by treatment with the proteasome inhibitor MG-132. The data demonstrate that FIG4-I41T is a hypomorphic allele encoding a protein that is unstable in vivo. Expression of FIG4-I41T protein at 10% of normal level is sufficient for long-term survival, suggesting that patients with CMT4J could be treated by increased production or stabilization of the mutant protein. The transgenic model will be useful for testing in vivo interventions to increase the abundance of the mutant protein.


American Journal of Human Genetics | 2013

Yunis-Varón Syndrome Is Caused by Mutations in FIG4, Encoding a Phosphoinositide Phosphatase

Philippe M. Campeau; Guy M. Lenk; James T. Lu; Yangjin Bae; Lindsay C. Burrage; Peter D. Turnpenny; Jorge Román Corona-Rivera; Lucia Morandi; Marina Mora; Heiko Reutter; Anneke T. Vulto-van Silfhout; Laurence Faivre; Eric Haan; Richard A. Gibbs; Miriam H. Meisler; Brendan Lee

Yunis-Varón syndrome (YVS) is an autosomal-recessive disorder with cleidocranial dysplasia, digital anomalies, and severe neurological involvement. Enlarged vacuoles are found in neurons, muscle, and cartilage. By whole-exome sequencing, we identified frameshift and missense mutations of FIG4 in affected individuals from three unrelated families. FIG4 encodes a phosphoinositide phosphatase required for regulation of PI(3,5)P(2) levels, and thus endosomal trafficking and autophagy. In a functional assay, both missense substitutions failed to correct the vacuolar phenotype of Fig4-null mouse fibroblasts. Homozygous Fig4-null mice exhibit features of YVS, including neurodegeneration and enlarged vacuoles in neurons. We demonstrate that Fig4-null mice also have small skeletons with reduced trabecular bone volume and cortical thickness and that cultured osteoblasts accumulate large vacuoles. Our findings demonstrate that homozygosity or compound heterozygosity for null mutations of FIG4 is responsible for YVS, the most severe known human phenotype caused by defective phosphoinositide metabolism. In contrast, in Charcot-Marie-Tooth disease type 4J (also caused by FIG4 mutations), one of the FIG4 alleles is hypomorphic and disease is limited to the peripheral nervous system. This genotype-phenotype correlation demonstrates that absence of FIG4 activity leads to central nervous system dysfunction and extensive skeletal anomalies. Our results describe a role for PI(3,5)P(2) signaling in skeletal development and maintenance.


Brain | 2011

Distinctive genetic and clinical features of CMT4J: a severe neuropathy caused by mutations in the PI(3,5)P2 phosphatase FIG4

Garth A. Nicholson; Guy M. Lenk; Stephen W. Reddel; Adrienne E. Grant; Charles F. Towne; Cole J. Ferguson; Ericka Simpson; Angela Scheuerle; Michelle Yasick; Stuart N. Hoffman; Randall Blouin; Carla Brandt; Giovanni Coppola; Leslie G. Biesecker; Sat Dev Batish; Miriam H. Meisler

Charcot-Marie-Tooth disease is a genetically heterogeneous group of motor and sensory neuropathies associated with mutations in more than 30 genes. Charcot-Marie-Tooth disease type 4J (OMIM 611228) is a recessive, potentially severe form of the disease caused by mutations of the lipid phosphatase FIG4. We provide a more complete view of the features of this disorder by describing 11 previously unreported patients with Charcot-Marie-Tooth disease type 4J. Three patients were identified from a small cohort selected for screening because of their early onset disease and progressive proximal as well as distal weakness. Eight patients were identified by large-scale exon sequencing of an unselected group of 4000 patients with Charcot-Marie-Tooth disease. In addition, 34 new FIG4 variants were detected. Ten of the new CMT4J cases have the compound heterozygous genotype FIG4(I41T/null) described in the original four families, while one has the novel genotype FIG4(L17P/nul)(l). The population frequency of the I41T allele was found to be 0.001 by genotyping 5769 Northern European controls. Thirty four new variants of FIG4 were identified. The severity of Charcot-Marie-Tooth disease type 4J ranges from mild clinical signs to severe disability requiring the use of a wheelchair. Both mild and severe forms have been seen in patients with the same genotype. The results demonstrate that Charcot-Marie-Tooth disease type 4J is characterized by highly variable onset and severity, proximal as well as distal and asymmetric muscle weakness, electromyography demonstrating denervation in proximal and distal muscles, and frequent progression to severe amyotrophy. FIG4 mutations should be considered in Charcot-Marie-Tooth patients with these characteristics, especially if found in combination with sporadic or recessive inheritance, childhood onset and a phase of rapid progression.

Collaboration


Dive into the Guy M. Lenk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerard Tromp

Stellenbosch University

View shared research outputs
Top Co-Authors

Avatar

Helena Kuivaniemi

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge