Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guy Steffens is active.

Publication


Featured researches published by Guy Steffens.


Biochimica et Biophysica Acta | 1981

Inhibition of cytochrome c oxidase function by dicyclohexylcarbodiimide

L.J. Prochaska; R. Bisson; Roderick A. Capaldi; Guy Steffens; Gerhard Buse

Dicyclohexylcarbodiimide (DCCD) reacted with beef heart cytochrome c oxidase in inhibit the proton-pumping function of this enzyme and to a lesser extent to inhibit electron transfer. The modification of cytochrome c oxidase in detergent dispersion or in vesicular membranes was in subunits II-IV. Labelling followed by fragmentation studies showed that there is one major site of modification in subunit III. DCCD was also incorporated into several sites in subunit II and at least one site of subunit IV. The major site in subunit III has a specificity for DCCD at least one order of magnitude greater than that of other sites (in subunits II and IV). Its modification could account for all of the observed effects of the reagent, at least for low concentrations of DCCD. Labelling of subunit II by DCCD was blocked by prior covalent attachment of arylazidocytochrome c, a cytochrome c derivative which binds to the high-affinity binding site for the substrate. The major site of DCCD binding in subunit III was sequenced. The label was found in glutamic acid 90 which is in a sequence of eight amino acids remarkably similar to the DCCD-binding site within the proteolipid protein of the mitochondrial ATP synthetase.


Journal of Cellular and Molecular Medicine | 2011

Hypoxia-induced endothelial secretion of macrophage migration inhibitory factor and role in endothelial progenitor cell recruitment

David Simons; Gerrit Grieb; Mihail Hristov; Norbert Pallua; Christian Weber; Jürgen Bernhagen; Guy Steffens

Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory cytokine that was recently identified as a non‐cognate ligand of the CXC‐family chemokine receptors 2 and 4 (CXCR2 and CXCR4). MIF is expressed and secreted from endothelial cells (ECs) following atherogenic stimulation, exhibits chemokine‐like properties and promotes the recruitment of leucocytes to atherogenic endothelium. CXCR4 expressed on endothelial progenitor cells (EPCs) and EC‐derived CXCL12, the cognate ligand of CXCR4, have been demonstrated to be critical when EPCs are recruited to ischemic tissues. Here we studied whether hypoxic stimulation triggers MIF secretion from ECs and whether the MIF/CXCR4 axis contributes to EPC recruitment. Exposure of human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells (HAoECs) to 1% hypoxia led to the specific release of substantial amounts of MIF. Hypoxia‐induced MIF release followed a biphasic behaviour. MIF secretion in the first phase peaked at 60 min. and was inhibited by glyburide, indicating that this MIF pool was secreted by a non‐classical mechanism and originated from pre‐formed MIF stores. Early hypoxia‐triggered MIF secretion was not inhibited by cycloheximide and echinomycin, inhibitors of general and hypoxia‐inducible factor (HIF)‐1α‐induced protein synthesis, respectively. A second phase of MIF secretion peaked around 8 hrs and was likely due to HIF‐1α‐induced de novo synthesis of MIF. To functionally investigate the role of hypoxia‐inducible secreted MIF on the recruitment of EPCs, we subjected human AcLDL+ KDR+ CD31+ EPCs to a chemotactic MIF gradient. MIF potently promoted EPC chemotaxis in a dose‐dependent bell‐shaped manner (peak: 10 ng/ml MIF). Importantly, EPC migration was induced by supernatants of hypoxia‐conditioned HUVECs, an effect that was completely abrogated by anti‐MIF‐ or anti‐CXCR4‐antibodies. Thus, hypoxia‐induced MIF secretion from ECs might play an important role in the recruitment and migration of EPCs to hypoxic tissues such as after ischemia‐induced myocardial damage.


Biomaterials | 2002

High density binding of proteins and peptides to poly(d,l-lactide) grafted with polyacrylic acid

Guy Steffens; L. Nothdurft; G. Buse; H. Thissen; Hartwig Höcker; Doris Klee

The use of graft polymers for the functionalisation of biomaterial surfaces is already widespread. We investigated the adsorptive and covalent binding of a variety of proteins and peptides to poly(D,L-lactide) grafted with polyacrylic acid. Covalent attachment was achieved through coupling of amino groups of the protein/peptide to the carboxyl groups of the graft polymer by using a water-soluble carbodiimide and N-hydroxysuccinimide. Binding densities were determined by automated amino acid analysis after acid hydrolysis of both the poly(D,L-lactide) and the adsorbed and covalently bound proteins. Experiments in the absence and presence of the coupling reagents allow to discriminate between adsorptive and covalent binding. Although the adsorptivc binding is quite substantial in absolute terms, the amount of adsorbed protein is relatively low as compared to the total amount of bound protein. Total binding densities of 20-30 microg/cm2 can easily be achieved. Depending on the concentration and on the properties of the proteins and peptides, between 5% and 80% of the totally bound protein may be physically adsorbed. Densities expressed in molecules/10 nm2 vary from 0.5 molecule fibronectin to 2,000 laminin-peptide molecules: their binding densities clearly correlate with their respective molecular masses. Obviously, the binding densities are governed by their individual three-dimensional space requirements rather than the density of the available carboxyl groups. From the number of carboxyl groups/10 nm2 (18,000-30,000 COOH/10 nm2) the average length of the acrylic acid graft polymer molecules was estimated. Based on the assumption that about 10 copolymer chains can be accommodated on 10 nm2, the average length of the polymer chains, which corresponds to the thickness of the graft phase, is estimated to be 0.5-1 microm. The organisation of the proteins and peptides within the polyacrylic acid phase was further investigated by experiments in which a protein (BSA) and a peptide (Val-Lys) were allowed to react in either a singular, a consecutive or a simultaneous way. Together with XPS and IR-ATR surface characterisation experiments a three-dimensional picture of the arrangement of the immobilised proteins and peptides within the graft polymer phase emerges.


FEBS Letters | 1982

Mapping of the cytochrome c binding site on cytochrome c oxidase

Roberto Bisson; Guy Steffens; Roderick A. Capaldi; Gerhard Buse

Cytochrome c oxidase (EC 1.9.3.1) is the terminal enzyme of the mitochondria respiratory chain catalysing electron transfer from cytochrome c to molecular oxygen [ 1,2]. The molecular mechanism of this process is still not understood. At present, little is known about such important structural features as the position of the prosthetic groups or the location and characteristics of the cytochrome c binding sites in the cytochrome c oxidase complex 131. The aim of this paper is to provide information about this latter problem as part of a more general effort of our laboratories to elucidate the relationship between structure and functions of cytochrome c oxidase. as in [S]. Cytochrome c oxidase was isolated from beef heart as in [7], the final dialysis step was omitted. The activity, measured polarographically in 0.5% Tween 80, 50 mM phosphate buffer (pH_7i4) ranged_fym 130170 mol cytochrome c. s . molaa3 . The covalent enzyme-substrate complex was


Basic Research in Cardiology | 2013

Differential roles of angiogenic chemokines in endothelial progenitor cell-induced angiogenesis

Isabella Kanzler; Nancy Tuchscheerer; Guy Steffens; Sakine Simsekyilmaz; Simone Konschalla; Andreas Kroh; David Simons; Yaw Asare; Andreas Schober; Richard Bucala; Christian Weber; Jürgen Bernhagen; Elisa A. Liehn

This study aimed to analyze the role of endothelial progenitor cell (EPC)-derived angiogenic factors and chemokines in the multistep process driving angiogenesis with a focus on the recently discovered macrophage migration inhibitory factor (MIF)/chemokine receptor axis. Primary murine and murine embryonic EPCs (eEPCs) were analyzed for the expression of angiogenic/chemokines and components of the MIF/CXC chemokine receptor axis, focusing on the influence of hypoxic versus normoxic stimulation. Hypoxia induced an upregulation of CXCR2 and CXCR4 but not CD74 on EPCs and triggered the secretion of CXCL12, CXCL1, MIF, and vascular endothelial growth factor (VEGF). These factors stimulated the transmigration activity and adhesive capacity of EPCs, with MIF and VEGF exhibiting the strongest effects under hypoxia. MIF-, VEGF-, CXCL12-, and CXCL1-stimulated EPCs enhanced tube formation, with MIF and VEGF exhibiting again the strongest effect following hypoxia. Tube formation following in vivo implantation utilizing angiogenic factor-loaded Matrigel plugs was only promoted by VEGF. Coloading of plugs with eEPCs led to enhanced tube formation only by CXCL12, whereas MIF was the only factor which induced differentiation towards an endothelial and smooth muscle cell (SMC) phenotype, indicating an angiogenic and differentiation capacity in vivo. Surprisingly, CXCL12, a chemoattractant for smooth muscle progenitor cells, inhibited SMC differentiation. We have identified a role for EPC-derived proangiogenic MIF, VEGF and MIF receptors in EPC recruitment following hypoxia, EPC differentiation and subsequent tube and vessel formation, whereas CXCL12, a mediator of early EPC recruitment, does not contribute to the remodeling process. By discerning the contributions of key angiogenic chemokines and EPCs, these findings offer valuable mechanistic insight into mouse models of angiogenesis and help to define the intricate interplay between EPC-derived angiogenic cargo factors, EPCs, and the angiogenic target tissue.


International Review of Cell and Molecular Biology | 2011

Circulating Fibrocytes—Biology and Mechanisms in Wound Healing and Scar Formation

Gerrit Grieb; Guy Steffens; Norbert Pallua; Jürgen Bernhagen; Richard Bucala

Fibrocytes were first described in 1994 as fibroblast-like, peripheral blood cells. These bone marrow-derived mesenchymal progenitor cells migrate into regions of tissue injury. They are unique in their expression of hematopoietic and monocyte lineage markers and extracellular matrix proteins. Several studies have focused on the specific role of fibrocytes in the process of wound repair and tissue regeneration. We discuss herein the biology and mechanistic action of fibrocytes in wound healing, scar formation, and maintenance of tissue integrity. Fibrocytes synthesize and secrete different cytokines, chemokines, and growth factors, providing a wound milieu that supports tissue repair. They further promote angiogenesis and contribute to wound closure via pathways involving specific cytokines, leukocyte-specific protein-1, serum amyloid P, and adenosine A(2A) receptors. Fibrocytes are involved in inflammatory fibrotic processes in such diseases as systemic fibrosis, atherosclerosis, asthma, hypertrophic scarring, and keloid formation. Accumulating literature has emphasized the important role of fibrocytes in wound healing and fibrosis. Detailed mechanisms nevertheless remain to be investigated to elucidate the full therapeutic potential of fibrocytes in the treatment of fibrosing disorders and the enhancement of tissue repair.


Cells Tissues Organs | 2004

Modification of Collagen Matrices for Enhancing Angiogenesis

Chang Yao; Pascale Prével; Sabine Koch; Peter Schenck; Ernst Magnus Noah; Norbert Pallua; Guy Steffens

The vascularization of engineered tissues in many cases does not keep up with the ingrowth of cells. Nutrient and oxygen supply are not sufficient, which ultimately leads to the death of the invading cells. The enhancement of the angiogenic capabilities of engineered tissues therefore represents a major challenge in the field of tissue engineering. The immobilization of angiogenic growth factors may be useful for enhancing angiogenesis. The most potent angiogenic growth factor specific to endothelial cells, vascular endothelial growth factor (VEGF), occurs in several splice variants. The variant with 165 amino acids both has a high angiogenic activity and a high affinity for heparin. We therefore incorporated heparin molecules into collagen matrices by covalently cross-linking them to amino functions on the collagen. Physical binding of VEGF to the heparin may then prevent a rapid clearance from the implant, while the release rate may become coupled to the degradation of the collagen matrix. The modified matrices were characterized by determination of the extent of the heparin immobilization, the in vitro degradation rate by collagenase. For testing the angiogenic properties, non-modified and heparinized collagen specimens were – either loaded with VEGF or non-loaded – subcutaneously implanted on the back of rats. Specimens were explanted after varying periods of implantation, the dry weights and the hemoglobin contents, as well as immunostained histological sections were evaluated: heparinized collagen matrices loaded with VEGF are vascularized to a substantially higher extent as compared to non-modified matrices.


Biochemical and Biophysical Research Communications | 1983

Sequence homology of bacterial and mitochondrial cytochrome c oxidases: Partial sequence data of cytochrome c oxidase from Paracoccus denitrificans

Guy Steffens; Gerhard Buse; Wolfgang Oppliger; Bernd Ludwig

The aerobic electron transport chain of Paracoccus denitrificans is very similar to that of mitochondria. It has therefore been suggested that this bacterium might be evolutionarily related to mitochondria. The two subunits (Mr 45.000 and 28.000) of the Paracoccus cytochrome c oxidase were isolated and partially sequenced. The sequences were found to be surprisingly homologous to sequences of the subunits I and II of mitochondrial cytochrome c oxidases. The data provide a molecular basis for the symbiotic origin of mitochondria and strongly support the notion that in eucaryotic oxidases subunits I and/or II carry the redox centers, heme and copper.


FEBS Letters | 2007

Macrophage migration inhibitory factor (MIF) promotes fibroblast migration in scratch‐wounded monolayers in vitro

Manfred Dewor; Guy Steffens; Regina Krohn; Christian Weber; Jens M. Baron; Jürgen Bernhagen

MIF was recently redefined as an inflammatory cytokine, which functions as a critical mediator of diseases such as septic shock, rheumatoid arthritis, atherosclerosis, and cancer. MIF also regulates wound healing processes. Given that fibroblast migration is a central event in wound healing and that MIF was recently demonstrated to promote leukocyte migration through an interaction with G‐protein‐coupled receptors, we investigated the effect of MIF on fibroblast migration in wounded monolayers in vitro. Transient but not permanent exposure of primary mouse or human fibroblasts with MIF significantly promoted wound closure, a response that encompassed both a proliferative and a pro‐migratory component. Importantly, MIF‐induced fibroblast activation was accompanied by an induction of calcium signalling, whereas chronic exposure with MIF down‐regulated the calcium transient, suggesting receptor desensitization as the underlying mechanism.


Journal of Materials Science: Materials in Medicine | 2002

The use of bifunctional polyethyleneglycol derivatives for coupling of proteins to and cross-linking of collagen matrices

J.-S. Chen; Ernst Magnus Noah; Norbert Pallua; Guy Steffens

The realization of three-dimensional (3D) degradable matrices which slowly release bio-active components represents a major challenge in the field of tissue engineering. In this paper we report on the usage of commercially available bifunctional agents for both the covalent coupling of proteins to and the cross-linking of collagen matrices. Proteins – horse radish peroxidase (HRP) was used as a model protein – were cross-linked with either a homobifunctional (disuccinimidyldisuccinatepolyethylene-glycol) or a heterobifunctional (N-hydroxysuccinimidylvinylsulfonepolyethyleneglycol) agent. In the case of the heterobifunctional cross-linking agent the collagen matrices were previously modified with succinimidylacetylthioacetate in order to introduce sulfhydryl groups. As compared with control experiments a 10-fold and 50-fold increase of immobilized proteins were achieved with the homobifunctional and heterobifunctional cross-linker resp. The HRP–PEG conjugates demonstrated a better long-term stability as compared to the non-treated HRP. The effects of the cross-linking agents and the thiolation reagent succinimidylacetylthio acetate on the in vitro degradation of the collagen matrices by collagenase were also investigated. In particular the reaction with succinimidylacetylthio acetate appears to offer interesting opportunities both for coupling active proteins and modulating the degradation times of collagen matrices.

Collaboration


Dive into the Guy Steffens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chang Yao

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar

David Simons

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge